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Summary: Although considerable information on cellular and
network mechanisms of epilepsy exists, it is still not under-
stood why, how, and when the transition from interictal to ictal
state takes place. The authors review their work on nonlinear
EEG analysis and provide consistent evidences that dynamical
changes in the neural activity allows the characterization of a

preictal state several minutes before seizure onset. This new neu-
rodynamical approach of ictogenesis opens new perspectives for
studying the basic mechanisms in epilepsy as well as for possible
therapeutic interventions. Key Words: Seizure anticipation—
Ictogenesis—Nonlinear analysis—EEG—Synchronization.

In Memoriam
Francisco J. Varela (1946–2001)

On May 28, 2001, Franscico J. Varela passed away. With his
passing, the science of brain dynamics and consciousness has
lost one of its most brilliant, original, creative, and compas-
sionate thinkers. During the latter years of his career, he was the
head of the Neurodynamics Group at the Laboratory of Cognitive
Neurosciences and Brain Imaging (CNRS UPR 640), at the Pitié-
Salpêtrière Hospital in Paris. He gave a considerable impulsion to
the group working in different fields: experimental studies using
multiple electrode recordings of epilepsy patients and mathemat-
ical analysis of large-scale neuronal integration during cognitive
processes; philosophical and empirical studies of the “neurophe-
nomenology” of human consciousness; and mathematical stud-
ies on the nonlinear dynamical analysis of brain activity (seizure
anticipation), by sharing his exceptional skills and considerable
knowledge in neurobiology, neural dynamics, cognitive neuro-
science, and philosophy. The spirit of his unique and exemplary
style of research has never been stronger and will continue to
inspire many of us for years to come (to see more details: Fran-
cisco’s obituary: http://psyche.csse.monash.edu.au/v7/psyche-
7-12-thompson.html).

One of the most disabling aspects of epilepsy is that
seizures appear to be unpredictable. For patients with
intractable epilepsy, this unpredictability of seizure is
responsible for enhanced risk for morbidity (1) and rep-
resents a major factor of worse quality of life (2). Antici-
pation of seizure onset, even of short term, would provide
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time for the application of preventive measures to mini-
mize seizure risk and, ultimately, to improve quality of life.
Moreover, successful completion of this goal will provide
some light for the characterization of basic pathophys-
iologic mechanisms responsible for individual seizures,
the so-called “ictogenesis,” and for the development of an
epileptic condition (3).

After a few negative findings (4,5), the search in EEG
signals for hidden information, predictive of an impending
seizure, has been a focus of much recent interest (6,7). This
resurgence of interest has been motivated mainly by new
advances in mathematical methods to analyze complex
systems. In particular, the techniques of nonlinear dynam-
ics have been subject of recent developments in theoretical
or experimental neurobiology (8). According to this new
approach called Neurodynamics (9), EEG signals can no
longer be regarded as a purely stochastic phenomenon but
reflect the behavior of hidden dynamical patterns that are
not detected by traditional linear signal analysis. Because
of its high versatility, nonlinear time-series analysis was
successfully applied in a variety of disciplines, includ-
ing cardiology (10), psychiatry (11,12), and neurology
(13,14). One of the most challenging arenas for the appli-
cation of the nonlinear analysis is the problem of seizure
anticipation.

In recent years, several studies based on nonlinear anal-
yses of EEG recordings have provided strong evidence
that the interictal–ictal state transition is not always an
abrupt phenomenon (15–23). These findings indicate that
it is possible to detect a preseizure state of several min-
utes, anticipating the electroclinical onset of a seizure.
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This possibility of seizure anticipation has generated both
excitement and concerns. Most of the concerns result from
overstatements and misunderstanding that have polarized
parts of the scientific community. We review here some
of the ongoing work of our group concerning seizure
anticipation. We also present the limitations of this ap-
proach and the many open questions. We do not be-
lieve that nonlinear analysis will answer all of the ques-
tions about seizure anticipation, and this review should
be thought as a report of work in progress. However, we
suspect that this approach may help us to reframe this old
question in a new, effective way and contribute to a better
understanding of why, how, and when the transition from
interictal to ictal state takes place.

CLINICAL CONSIDERATIONS

As stated earlier, a fundamental feature of epilepsy
is the spontaneous occurrence of seizures, often with-
out warning and for no apparent reason. For only ∼3%
of all patients with epilepsy (the so-called reflex epilep-
sies), the seizures are explicitly evoked by an external
stimulus. For the other patients, no clear events determine
when a seizure will occur. Nevertheless, a number of clin-
ical observations indicate that an epileptic seizure is not
an abrupt phenomenon that occurs like a bolt from the
blue:

Changes in internal milieu (stress, startle, sleep or lack
of it, biorhythms, menses) and external environment (in-
termittent photic stimulation) are known to be favorable to
facilitate seizures (3). The term seizure threshold is used
to explain this tendency to have seizures determined by
predisposing and facilitating factors (i.e., they do not nec-
essarily evoke seizures, but may increase the likelihood of
attacks by sensitizing the brain to some stimulus for the
period in which they operate). Lennox (24) first proposed
some of these factors in his Reservoir Theory. In brief,
this theory implies that the input of various metabolic,
emotional, and other factors fill a reservoir until it over-
flows (i.e., seizure threshold is reached) and a seizure
ensues.

Some warning symptoms, also called prodomi, also
have been reported sometimes to precede epileptic
seizures from several minutes to hours. These symptoms
include depressive disorder, irritability, sleep disorders,
nausea, and headache. A multicenter study of 562 patients
recently investigated the frequency of the occurrence of
warning symptoms (25). Unexpectedly, ∼50% of the pa-
tients experienced warning symptoms before a smaller
or greater part of their seizures. Usually a long interval
>5 minutes (in 42% of the cases) elapsed between the
warning symptom and the onset of the seizure. This inter-
val may allow a distinction between the warning symp-
toms and the “aura” considered as the early part of the
seizure.

Autonomic changes were reported before temporal lobe
seizures (26). The dynamics of autonomic functions were
derived from oscillations in heart R-R interval by using
a time–frequency mapping during preictal, ictal, and pos-
tictal periods. The results showed that subclinical auto-
nomic changes hallmark clinical seizure onsets for several
minutes.

Penfield (27) was the first to note that the cerebral blood
flow (CBF) changes before an epileptic seizure. He hy-
pothesized that electrical and clinical seizure onsets appear
to be only epiphenomena that are preceded by significant
changes in CBF. More recently, this hypothesis was fur-
ther supported by invasive techniques measuring regional
CBF in a continuous fashion (28) or fortuitous noninvasive
SPECT (single-photon emission computed tomography)
observations (29). The studies demonstrated that preic-
tal modifications occur in CBF ∼10 min before temporal
lobe seizures. Significant alterations have been reported
in both epileptogenic and contralateral nonepileptogenic
neocortex, consistent with a widespread alteration of brain
perfusion before seizure onset.

PROBLEM DEFINITION: SEIZURE DETECTION
VERSUS SEIZURE ANTICIPATION

The EEG correlate of the seizure in partial epilepsy is
characterized by the sudden appearance of an ictal dis-
charge out of the ongoing background activity (3). These
ictal patterns are identified by the expert’s visual inspec-
tion of EEG recordings—still the “gold standard” for
seizure identification. The term seizure detection refers
to the identification of these visible and known electro-
graphic patterns. Gotman (30) is one of the pioneers in
this area of automatic seizure-event detection in human
EEG. A recent article addressing seizure-onset detection
describes a system that extracts six features from the time
and frequency domain, feeds them into a modified nearest-
neighbor classifier, and yields a 100% detection rate with
an average of 0.2 false positives per hour. The warning
was given on average 9.6 s after the electrographic seizure
onset. More recently, another promising approach was fol-
lowed by Osorio et al. (31), applying a wavelet filter to
intracranial recordings for classification between seizure
and no-seizure states.

Conversely, the term seizure anticipation is used to re-
fer to the process of identifying a state from the EEG
that precedes a clinical seizure that is known to have oc-
curred. Rather than referring to a declaration in advance,
anticipation refers to the time between the earliest iden-
tification of a preseizure state and either the onset of the
clinical seizure or the time at which a well-trained clin-
ician can pick up evidence by visual inspection of the
EEG (16,20,21,32,33). In contrast to seizure detection, no
known electrographic clues predict the occurrence of a
seizure (5). A few studies have hypothesized that changes
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in interictal epileptiform activity can anticipate the patho-
physiologic recruitments that give rise to a seizure. Nev-
ertheless, conflicting findings were reported: Wieser (34)
reported a decrease in spiking before seizure. Lange et al.
(35,36) observed that the spatial organization of spike pat-
terns appears to change several minutes before temporal
lobe seizures, whereas others (37,38) found no change in
spiking before seizures. Gotman et al. (39) used prolonged
telemetry recordings (11–16 days) in six patients whose
medication levels were stable. Spike rates were sometimes
found to increase seconds before seizures, but the main
finding was that repeated seizures caused a build-up in
spike rate. It is apparent from these findings that merely
quantifying spike rate is unlikely to yield information to
heralding seizure onset. Therefore, in contrast to seizure
detection, anticipation involves the detection of nonvisible
electrographic patterns, at least until the epileptogenesis
issue is clearly resolved.

NEURODYNAMICS: HOW NONLINEAR
ANALYSIS MEETS NEUROSCIENCES

Research in physiology often involves the analysis of
irregular signals. In particular, the brain recordings at all
levels represent complex signals that follow various dy-
namical transitions, and of which the statistical properties
depend on both time and space. Bursting behavior, inter-
mittent phenomena, and amplitude-dependent frequency
behavior are among typical patterns that have proven diffi-
cult to understand with current statistical techniques. Fur-
thermore, these standard methods do not offer an adequate
characterization of phenomena referred to as “bifurcation”
between different behaviors or “rapid state changes” in
brain activity. In this respect, the sudden unpredictable
start of an epileptic seizure is paradigmatic.

In the last decade, new answers were proposed to this
problem (40). It was suggested that one difficulty of ana-
lyzing complex signals was the result of examining the
time series in terms of static rather dynamic behavior.
Traditional signal-processing procedures decompose, for
example, through Fourier analysis, the frequency com-
ponents of the signal and thus reflect a limited amount of
information (one-dimensional). In contrast, the dynamical
view suggests that a time series may reflect an unambigu-
ous relation between present and future states and take
into account all other variables participating in the dy-
namics of the system (multidimensional). This approach
has drastically modified the manner in which physiologic
processes are viewed and described (see ref. 41 for a re-
view). For example, some neuronal processes formerly
perceived as random are now viewed in terms of lawful
nonlinear patterns (42).

Given that a complex dynamic system (such as the hu-
man nervous system) can involve an enormous number
of interrelated dependent variables that are impossible to

measure directly, the main problem is how to analyze a
multidimensional dynamics knowing only a few variables
that can be measured. It can be mathematically established
(43) that, if we can measure any single variable with suf-
ficient accuracy, for a long period, then it is possible to
make quantitatively meaningful inferences about the un-
derlying dynamical structure of the entire system from
the behavior of this single variable. The geometric prop-
erties of the trajectories evolving in the phase-space can be
then expressed quantitatively by using nonlinear measures
(Fig. 1). An important measure is the dimensionality of the
dynamics, referred to as the “correlation dimension” or D2,
which defines the minimal number of variables that allow
the full description of the system. Considerable discus-
sions concern parameters such as what would constitute
sufficient accuracy, how often the signal should be sam-
pled, as well as how long data segments should be (44).
Of course, the mathematical rigor is not always easy to
translate to the biologic domain. Nevertheless, the nonlin-
ear approach provides a practical toolkit for the analysis
of complex behaviors at different levels of organization
of the nervous systems from single neurons to neuronal
ensembles (8).

BRAIN STATE CHANGES: SHORT AND LONG
TIME SCALES

The brain dynamics exhibit many different time scales
and can be viewed as a succession of transient spatiotem-
poral patterns of activity that mediate perceptual synthe-
sis and sensorimotor integration. This formulation em-
bodies one fundamental point: any proper description of
brain dynamics should have an explicit temporal dimen-
sion. In other words, measures of brain activity are mean-
ingful only when specified over extended periods. Very
crudely, some variations may occur on a short time scale
on the order of tenths of a second. This time scale is par-
ticularly important for fast dynamics interactions among
neuronal populations that are characterized by transient
synchrony in the high-frequency ranges (45). Thus, vari-
ations on time scales shorter than 1 min are thought of
as variations within a single dynamic state. Conversely,
other qualitatively different variations may occur on a
long time scale of minutes or hours. Many variations typ-
ically occur within 1 h of the state of human conscious-
ness: alert wakefulness or drowsiness, open or closed eyes,
and different sleep states, including rapid eye movement
(REM). These variations over time scales much longer
than 1 min mark transitions among heterogeneous dy-
namic states. When looking for preictal signs, we are
looking for changes among dynamic states on long time
scale. If one method is ultimately successful in predict-
ing seizures, it will be important to be sensitive to preictal
changes in the brain, but also to be able to distinguish
clearly between benign changes in behavioral state and
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FIG. 1. Dynamical analysis of
EEG signals. The method of de-
lays is one way of representing the
EEG dynamics in a phase space.
In this representation, the state at
each point in time is represented by
a vector generated by taking suc-
cessive amplitudes separated by a
time lag τ . This reconstruction of
the underlying dynamics is the first
step of all techniques of nonlinear
analysis. The geometric properties
of the phase space can then be
expressed quantitatively by using
nonlinear measures. The Lyapunov
exponent (measuring the average
rate of expansion in time), the pre-
dictability (measuring the uncer-
tainty about the future state of the
system), the density at some toler-
ance R, and the dimensionality D2
(measuring the minimal number of
variables that must be considered
in the description of the system) are
commonly used to characterize dy-
namical structures.

changes that portend the onset of a seizure. Moreover,
it is well known that normal brain states can have a fa-
cilitating effect on seizures (see preceding section). For
example, sleep and circadian variations in arousal have
a marked influence on the expression of epilepsies (46),
and sleep deprivation has a dramatic impact on epilepsy.
This interaction also is reciprocal, because epilepsy also
can alter sleep/wake cycles. The relationships between
these facilitating and the precipitating preictal states and
how they interact to produce a seizure in an individ-
ual remain largely unknown. This makes more compli-
cated a better understanding of the dynamical basis of
ictogenesis.

EPILEPSY AS A DYNAMICAL DISEASE

Historically, Babloyantz and Destexhe (47) were the
first to demonstrate that the nonlinear analysis of EEG
recordings from patients with epilepsy can provide new
perspectives regarding epileptogenesis. They estimated
the dimensionality and the largest Lyapunov exponent (the
mean rate of divergence of initially neighboring states)
of scalp EEG signals recorded during a human absence
seizure. They found that the value of D2 for seizure activ-
ity is of considerably lower value than for normal activity,
whereas a positive value was estimated for the largest Lya-
punov exponent. These findings support the hypothesis
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that the generation of ictal activity in the brain cor-
responds with a specific dynamical state that is clearly
different from normal ongoing activity. The different val-
ues of the nonlinear quantities suggest a decreased level of
complexity in neuronal networks involved in the epileptic
process. In a comparable study, Pijn et al. (48) analyzed
epileptic seizures in an animal model of epilepsy (lim-
bic kindling in the rat). The decrease in the D2 value was
most pronounced in the primary epileptogenic area and
gradually decreased with increasing distance from the fo-
cal area, suggesting a reliable relation between location of
neuronal complexity and seizure outcome. In good agree-
ment with the animal model, Lehnertz and Elger (49) pre-
sented a moving-window nonlinear analysis of intracra-
nial EEG in 20 patients with unilateral medial temporal
lobe epilepsy (MTLE). The onset of a seizure was char-
acterized by an abrupt decrease in D2 most pronounced
in the area of ictal onset, so a spatial identification of the
epileptogenic focus by nonlinear quantities appears possi-
ble. These findings are in line with the work of Iasemidis
and Sackellares (50), who described similar variations in
the largest Lyapunov exponent. Perhaps the most excit-
ing observation, first reported by these authors, was that
spatiotemporal variations of this nonlinear measure pre-
cede the seizure by several minutes. These changes ap-
pear to evolve in characteristic patterns, defined as the en-
trainment of the nonlinear quantities of the epileptogenic
hippocampus, the contralateral hippocampus, as well as
the ispi- and contralateral temporal and frontal neocortex.
Nevertheless, these results were based on a few recordings
and had no statistical validation of the significance of the
nonlinear measure; this made it difficult to draw definite
conclusions.

How the transition from interictal state to the ictal state
occurs was explored at the same time by our group (22)
and the Bonn group (17). We estimated the correlation
integral (which is a measure of the average density in
phase space and the fundamental statistic used to deter-
mine D2) from intracranial EEG recordings 20 min before
the seizure onset in 11 patients with MTLE. Our objec-
tive was to follow, by this nonlinear indicator, the transi-
tions to seizures within the epileptogenic focus (defined
by the earliest EEG signs of seizure activity) by using
surrogate data as statistical control. We demonstrated that
in most cases (90%), changes toward long-lasting states
occurred before the seizure (mean, 2.5 min) and were
more pronounced compared with maximal changes oc-
curring during interictal states, thus enabling us to define
a preictal state. This phenomenon could not be detected
by visual inspection of the original signal or by other
more traditional methods of signal processing. Lehnertz
and Elger (17) confirmed these findings in a comparable
group of 16 MLTE patients. Similar results also were ob-
tained from the spatiotemporal evolution of the largest
Lyapunov exponent (50,51), from the spectral analysis

of nonlinear fluctuations (52), and by recurrent neuronal
network (53).

Taken together, this converging evidence suggests that
the dynamical properties of the interictal, preictal, ictal,
and postictal states are clearly different. The seizure might
be interpreted as the “tip of the iceberg” in the sense that
it is just the climax of a process of changes that starts
long before. This transition or route toward the seizure
seems to reflect a process from “disorder to order” and
argues that epilepsy belongs to dynamical diseases (54).
Despite some scepticism about some interpretations of the
results (see the next section for a critical point of view),
the reported findings have unambiguously demonstrated
that the nonlinear analysis carries a great potential for
the detection of subtle changes in brain electrical activity
before seizure (7).

SHORTCOMINGS OF NONLINEAR ANALYSIS:
BRAIN DYNAMICS IS NOT CHAOTIC

We have presented consistent evidence for preictal
changes of several minutes before seizure onset. Never-
theless, some difficulties arise in a careful application of
nonlinear analysis to brain signals and in the interpre-
tation of the results. The major difficulties result from
the indiscriminate application of the mathematical con-
cept of “chaos” (i.e., deterministic dynamics with a few
degrees of freedom) to physiological time series before
understanding the actual mathematical properties of the
signals. Indeed, after an initial euphoric period (47), it is
commonly accepted that the existence of chaotic struc-
tures underlying neuronal dynamics is difficult or even
impossible to prove (55). It has been shown, for example,
that low complexity can be found even for random noise
(56). Furthermore, in systems in which the exact value
of the complexity is theoretically known, application of a
low-pass filter and the use of time series of finite length
could lead to severe underestimation or overestimation of
the dimension. In addition, if the true dimension is 5 or
higher, the most commonly used algorithms for studying
dynamical behavior produce erroneous results, sometimes
spuriously suggestive of low-dimensional dynamics (57).
Consequently, measures of system complexity do not, in
themselves, give any insights into whether the system un-
der study shows a complexity change in terms of the num-
ber of degrees of freedom. Some authors have addressed
this issue statistically, by comparing their estimates of bi-
ologic data with those of surrogate data with the same sta-
tistical properties as the original data but losing all dynam-
ical information (22,48,58). Nevertheless, errors with this
method can arise, because the statistical testing assumes
data stationarity over the whole epoch. In summary, an
increasing awareness of the pitfalls and limitations of the
mathematical and statistical techniques has led to doubts
about the low complexity of preictal changes.
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MEASURING RELATIVE CHANGES
OF BRAIN DYNAMICS

In the recent years, our effort differs from previous
works in this area by focusing on methods that are sen-
sitive to the existence of a change and not necessarily to
the nature of the change. For this purpose, we used a rel-
ative dynamical measure (comparing across states) rather
than absolute index (18,19). The novelty of the approach
is based on the comparison between different moments of
the time series, rather than comparison by statistical pa-
rameters derived for the time series (Fig. 2A). It is then
possible to use relative measures that can be interpreted
as a distance or degree of dissimilarity (23,59). Note that
this idea to use relative measures between segments of a
long sequence for nonstationarity testing has been brought
up in recent theoretical works (60), showing a greater
discriminatory power than previous nonlinear techniques
(59). This idea is particularly useful if nonstationarity is
given by changes of the shape of an attractor, while dy-
namical invariants remain effectively unchanged. Further-
more, unlike deterministic approaches aimed at finding
low-dimensional chaos, the similarity framework allows
sensitivity to a high-dimensional character of the dynam-
ics and the presence of stochastic effects.

Figure 2B gives a representative example of our anal-
ysis applied to a 20-min intracranial recording before a
spontaneous seizure of temporal lobe origin. The simi-
larity plot (with a reference state taken at the beginning
of the recording) decreases over several orders of mag-
nitude, indicating a transition to a sustained preictal state
∼3 min before seizure onset. After this sustained preictal
state, the actual seizure induces a second decrease to the
lowest values. Postictally, the similarity increases again to
the initial level found before the seizure. In this example,
a positive detection is defined by a sustained deviation.
The anticipation time is defined as the point when the
similarity reaches a critical level and remains at or above
this fixed deviation threshold k during a time length D.
The threshold values (k, D) were determined empirically
for our dataset of seizure/subjects to avoid any false posi-
tives and still anticipate the actual seizure. In our work, we
chose k = 5, corresponding to a p value of 0.04, and D =
150 s. With these criteria, we estimated in our example an
anticipation time of 3 min. The results obtained from a ho-
mogeneous group of 13 patients with TLE confirmed our
previous findings that the extraction of dynamical proper-
ties allows, in most of the cases, seizure anticipation sev-
eral minutes in advance (mean, 5.5 min) (18). This new
method provides a substantial improvement of our previ-
ous anticipation times (22). With a comparable measure of
dissimilarity (L1 distance and statistic between two phase
spaces), Hively et al. (61) and Savit et al. (23) confirmed
the discriminating power of this strategy for the detection
of EEG changes.

ANTICIPATION FROM STANDARD SCALP EEG

To make seizure anticipation practical in real life con-
ditions and to study types of epilepsy that do not warrant
intracranial electrode implantation, applications to scalp-
EEG recordings is fundamental. However, it is well known
that neuronal activity generated within the brain is spa-
tially filtered between neocortex and scalp. This occurs
because of the physical separation of the electrode from
the nearest neuronal sources (∼1 cm) and the “smear-
ing” effect of the skull, which has an electrical resistivity
estimated to be roughly 80 times that of cortical tissue
(62). Aside from signal attenuation and poor spatial res-
olution, scalp EEG is well known to be subject to noise
or artifacts, which may render delicate and even ques-
tionable the detection of changes with current nonlinear
measures.

In a recent study (20), we evaluated on scalp EEG
recordings our nonlinear strategy based on measure of
similarity to determine whether changes in brain dynam-
ics can be detected early enough to anticipate the seizure
onset. Analyses were performed on 26 scalp-EEG record-
ings, including 60 min. before seizure, obtained from 23
patients with TLE. In a subgroup of five patients, we vali-
dated our analysis on simultaneous scalp and intracranial
recordings. Our results indicated that preseizure changes
in brain dynamics can be detected from recordings of
scalp EEG activity (Fig. 3A). In most cases (25 of 26),
measurement of nonlinear changes in EEG signals al-
lowed the anticipation of the seizure by several minutes
(mean, 7 min). Furthermore, these preictal changes in the
scalp EEG corresponded well with concurrent changes
in depth recordings (Fig. 3B). Therefore, scalp EEG
recordings retain sufficient dynamical information that
can be used for the analysis of preictal changes leading to
seizures.

These findings are surprising in that they suggest
that quantitative changes in scalp electrical activity are
comparable to those detected from intracranial record-
ings. However, the relation between activities recorded
with intra- and extracranial electrodes is more complex
than a simple decrease in the signal-to-noise ratio be-
cause of cortical convolutions, anatomic anisotropies,
and the orientation, shape, and extension of the under-
lying generators. In addition, electrical potentials pro-
duced by neocortical structures and recorded from scalp
electrodes also may be driven by events in deeper cere-
bral regions. For instance, changes in the hippocampal
activity may cause secondary activation of several neo-
cortical areas, producing large synchronized local field
potentials. Further studies are required to identify the ex-
tent of generators giving rise to the global dynamics ul-
timately detected on the scalp, in particular, with more
extensive intracranial sampling or source-localization
methods.
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FIG. 2. A nonlinear method for characterizing dynamical EEG changes. A: Our strategy first reduces the EEG signal to sequences of
time intervals In between each successive zero-crossings. The second step is to define a multidimensional reconstruction of the dynamics
by a time-delay embedding of the intervals (In,In+1,. . .,In+m−1) where m is high dimensional in our computations, but here m = 3 for a
schematic representation. In the 3D space, he dynamics of each window is represented by a cloud of points of which the density fluctuates
in time. The third step is to quantify a similarity index measuring the closeness between the reference and test dynamics. The similarity
can be viewed as the average number of common points between these reference and test clouds. If the signal is stationary, the similarity
index yields a value close to 1. Conversely, if changes in the dynamical state occur, the similarity index between the two clouds decreases
to <1. B: A representative example of our analysis applied to a 20-min intracranial recording of an epileptogenic hippocampus before a
spontaneous seizure. We define the preictal state when the similarity index remains 5 standard deviations under the reference state. With
this criterion, we identified a sustained preictal state ∼3 min before seizure onset.
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FIG. 3. Anticipation from scalp EEG. A: Analysis of 50 min of a scalp-EEG channel (FT9) before a temporal lobe seizure. Top: Examples
of consecutive windows of 30-s duration in the recording. The seizure onset occurs at window 97. Middle: The similarity profile from a long
“reference period” chosen here from windows 1 to 10. A sustained preictal state is identified 18 min before seizure onset. Bottom: The
statistical significance of the preictal changes is quantified by the deviation of the test window from the reference state, here depicted in
standard deviations by using a color scale. B: Complete spatiotemporal picture of preictal dynamics. The changes from the reference state
for each contact are quantified in standard deviations. The corresponding anticipation times are indicated on the right side. Long-lasting
decreases ∼18 min before seizure were found at a large number of the recording sites. R-L, right-left. For the scalp electrodes, Temp,
temporal; Front, frontal; Cent, central; Par, parietal; Occ, Occipital (extended International 10–20 System). For the intracranial electrodes,
H, intrahippocampal electrodes with 1, amygdala, 2–3, hippocampus; G, subdural grid; S, subdural strip.
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NEW WAYS TO ANTICIPATE SEIZURES: THE
ANALYSIS OF NEURONAL SYNCHRONIZATION

In the studies described so far, we tracked the tempo-
ral evolution of nonlinear measures at different recording
sites, thus considering no spatial interactions during the
transition to the ictal state. Recently, measures of syn-
chronization revealed new insights into the spatiotempo-
ral characteristics of the epileptogenic state (63–65). In
a more general context, processes of synchronization on
various levels of brain organization, from individual pairs
of neurons to much larger scales (within one area of the
brain or between different parts of the brain) are necessary
to attain normal neuronal activity (45).

Detection of synchrony in the brain is a great challenge.
Most commonly, synchronizations are characterized by
means of traditional cross-correlation (or coherence) tech-
niques. Unfortunately, these classic tools for measuring
coherence (66) based on Fourier analysis are highly de-
pendent on the stationarity of the measured signal, which
is far from being the case in the brain. The use of time–
frequency estimations, which do not assume stationarity,
can improve this limitation toward estimating a stable, in-
stantaneous coherence as well as synchrony between two
concurrent brain signals. A second and very different lim-
itation is that classic coherence is a measure of spectral
covariance, and thus does not separate the effects of ampli-
tude and phase in the interrelations between two signals.
Because we are interested in exploring the explicit hy-
pothesis that synchrony as phase-locking is the relevant
mechanism of brain interactions, coherence provides only
a partial and indirect measure.

A direct study of phase relations in the brain requires
tools with which the phase component can be obtained
separately from the amplitude component for a given fre-
quency range, which can be quite unstable or even un-
correlated (67). Recently we introduced a new method
for this purpose on the basis of wavelet analysis (35). In-
dependently, an alternative method based on the Hilbert
transform was introduced by Tass et al. (68). Both tech-
niques give similar results applied to neuroelectrical data
(32).

With this technique, we analyzed the synchronization
between intracranial recordings from eight patients with
neocortical focal epilepsy being evaluated for epilepsy
surgery (33). Figure 4A depicts a representative example
of the temporal evolution of the synchrony near the epilep-
togenic focus before a seizure. Our main findings were
that we consistently observed a preictal decrease in syn-
chrony within the 10- to 25-Hz range (the so-called beta
1 band) in 77% of the seizures, independent of whether
the patient was awake or asleep. This decrease is the ex-
act converse of phase-locking, and is best described as
phase-scattering, in which the probability of finding syn-
chrony between two electrodes decreases well below the

interictal level. Interestingly, these changes occurred on a
large time scale, sometimes hours before the actual seizure
(33,65), and showed recurrent spatial patterns that were
more pronounced over the regions near the epileptogenic
focus.

Although preliminary, these results reinforce the find-
ings of nonlinear changes before an impending seizure.
Nonlinear analysis essentially measures the number of
degrees of freedom of the underlying neural dynamics,
which are directly related to the degree of local syn-
chronization (69). Furthermore our results provide new
insights into the pathophysiologic mechanisms underly-
ing the preictal process. In particular, the preictal period
may reflect the activity of a specific population of neu-
rons in relation to the epileptic focus that can induce
dyssynchronization—their participation in normal syn-
chronization processes is reduced, resulting in a state of
increased susceptibility to sudden pathological synchro-
nization. Two related processes with different time scales
seem to be involved: (a) a long-lasting decrease in syn-
chrony over minutes, creating conditions favorable for the
appearance of seizures; our findings suggest that neuronal
populations surrounding the epileptic focus are of crucial
importance in this process, determining whether a seizure
is likely to occur and spread; and (b) a fast hypersynchro-
nization process giving rise to the seizure onset. Following
the hypothesis of Wyler et al. (70), the synchronization of
a critical mass of neuronal populations is at this step the
necessary condition for the seizure initiation.

THE NEXT STEPS

The specificity/sensitivity ratio
Our findings were obtained mainly from retrospective

studies in selected patients. Seizure anticipation can be
demonstrated only by validation of the methods on out-
of-sample data, in which the presence of seizures is un-
known to the tester. In all the works performed in this
field, the term seizure anticipation is weaker and refers
to the time between identification of a preseizure state
and the time at which a well-trained clinician can pick up
evidence by visual inspection of the EEG. Furthermore,
we selected spontaneous seizures, excluding seizures pre-
ceded by classic precipitating factors (hyperventilation
and photic stimulation) and occurring during stable state
of vigilance, as validated by reviewing videotapes. Indeed,
as pointed out by others (37), state changes in the inter-
ictal dynamics induced by different physiologic states of
the brain (like the wakefulness-to-sleep transition) may
contribute to spurious detection of preseizure changes,
whatever the type of analysis. Therefore, a study over
longer periods is clearly the next step to evaluate the speci-
ficity and sensitivity of the methods. It should be deter-
mined whether the changes observed in preictal activity
are unique to this period, or whether they are cyclic and
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FIG. 4. A: Preictal loss of synchrony. Time–frequency chart of synchrony (top) and power spectrum (bottom) of signals from a pair
of electrodes near an epileptic focus. A sustained decrease from the baseline level of synchrony occurred in the beta range (10–15 Hz)
∼70 min before the seizure. Changes in phase synchrony are directly related to modifications in complexity detected by the nonlinear
measure. This was not the case for the power spectrum. B: Possible mechanisms for ictogenesis. The preictal loss of synchrony might
suggest the following mechanisms. During the interictal state, the neuronal population in relation to the epileptic focus are implicated in
large-scale dynamics of normal brain functioning. During the preictal state, this population loses the synchronization with other cortical
areas and with themselves. This condition isolates the epileptic pacemakers from the ongoing large-scale brain influences and facilitates
the development of a focal hyperexcitable state. This condition also provides an “idle” population of neurons that become easily recruited
into the epileptic process. Additionally, during this preictal state, the inhibitory control of the epileptogenic zone can progressively break
down. Seizure activity will be initiated when a critical mass is recruited.
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can occur at periods remote from ictal events. Probably pe-
riods of dynamical changes are not followed by a seizure.
They may correspond to a real modification of the epilep-
tic activity, but they also can be unrelated to the epileptic
condition. The influence of antiepileptic drugs (AEDs)
also must be taken into account.

The spatial distribution of preictal changes
Another issue for further research concerns the spatial

distribution of the preictal changes. Are they focal, strictly
restricted to the area of seizure onset, or are they more
extensively distributed? We have examined the transition
from interictal to ictal state for a wide range of intracra-
nial recording locations within the epileptogenic area and
remote brain regions (19). Our analysis revealed that the
spatial distribution of preictal dynamical changes implies
a diffuse network, involving the epileptogenic area, but
seems not always confined to the restricted ictal-onset re-
gion. Several different regions may be implicated, often
located at widely separated sites, with a topography more
widespread than that of the ictal-onset zone and not spa-
tially congruent with the interictal spiking area. This ob-
servation is strengthened by previous works (71) showing
widespread functional, cognitive, electrical, and structural
abnormalities in MTLE, often suggesting a regional extent
of the dysfunctional network with frequent contralateral
temporal lobe involvement and, to some degree, a more
diffuse process, eventually reflecting secondary epilepto-
genesis (72). Nevertheless, our observation contrasts with
the previous results of Lehnertz and Elger (17), report-
ing that relevant preictal dynamical changes remain con-
fined to the site where the first focal electrical changes are
detected.

The type of epilepsy
An important point to keep in mind is that these re-

sults have all been obtained in patients with MTLE. In
spite of some degrees of variability in the electroclinical
presentation (73), they share as common features that the
first signs of seizure activity are recorded at the amyg-
dalohippocampal structures, mainly associated with hip-
pocampal sclerosis and a secondary electrical involvement
of the temporal and frontal neocortical areas. The amyg-
dalohippocampal complex plays the key role, in terms of
both generation and propagation, and other types of par-
tial epilepsies may exhibit different dynamical behaviors.
Whether similar findings can be obtained for seizures orig-
inating in neocortex is now under investigation.

Putative neuronal mechanisms of the preictal changes
Although the present findings are still limited and do not

provide a robust physiologic mechanism, some hypothe-
ses can nevertheless be made. From our analysis of preictal
synchronizations (previous section), we hypothesize that
the preictal changes probably refer to a decrease of the
interaction between the primary epileptogenic area and its

surroundings. Several mechanisms may be distinguished
to explain this phenomenon (Fig. 4B): First, desynchro-
nization may functionally isolate pathologically discharg-
ing neurons of the epileptic focus from the influence of
large-scale brain activity, so facilitating the development
of local pathological recruitments. Second, this condition
may provide an “idle” population of neurons, which may
be more easily recruited into the epileptic process. Finally
the preictal loss of synchrony could reflect a depression
of synaptic inhibition in areas surrounding the epilepto-
genic focus, as demonstrated in experimental models of
epilepsy (74). Possible changes in inhibitory signaling are
especially interesting because inhibitory interneurons are
believed to underlie the generation of synchronizations
in a specific frequency range (75,76). Furthermore, syn-
chronies have been suggested to play a major role in nor-
mal brain function, in particular in the establishment of
large-scale links between neuronal groups (45,77). There-
fore, the large-scale synchronization could be related to
mechanisms that may limit or prevent seizures (78). Ani-
mal models will be useful to understand further the mech-
anisms underlying these preictal dyssynchronization and
are under investigation.

FUTURE PERSPECTIVES

What might be done with the information about preic-
tal changes? The ability to anticipate seizures by using the
intracranial or scalp EEG may have considerable practi-
cal implications for the large population of patients with
uncontrolled epilepsy:

1. Patients warning: A system of early warning about
a seizure would be of great help for numbers of
patients and relatives. Such a system would reduce
medical consequences of seizures and improve the
quality of life of persons with epilepsy by decreas-
ing the risk of injury and the sense of helplessness
fostered by the unpredictability of the disease. Nev-
ertheless, it must be stressed that before reaching
this stage, we must make two major advances. First,
the analysis of specificity and sensitivity in realis-
tic conditions (hospitalized or ambulatory patients)
must be pursued with diligence, until a safe mar-
gin can be achieved for most patients and the most
common types of epilepsy. Second, the process of
miniaturization of a device must be accomplished
and the kinds of electrodes to be used thoroughly
explored. Although both these objectives are sur-
mountable, they have yet to be concretely accom-
plished before the public is given hopes for such a
new clinical application.

2. Ictal SPECT procedure: Implementing a bedside
system of seizure anticipation in a video/EEG unit
would be of considerable help for efficient seizure
monitoring and for the injection of the radioactive
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tracer in ictal SPECT examinations. Optimally the
tracer must be injected at seizure onset as soon as
possible. Very often this procedure is not informa-
tive enough due to a late injection, tens of seconds
after the onset, which marks the areas of propaga-
tion more than the actual epileptogenic zone. Con-
siderable resources could be spared by an efficient
anticipation of the seizure.

3. Interventions for seizure abortion: The perspective
opened by the ability to anticipate a seizure several
minutes in advance would provide a time window
during which therapeutic measures may be taken to
avoid the risk of seizure occurrence. In this context,
pharmacologic control may be possible by using
rapidly acting AEDs with a quick delivery proce-
dure. Probably better adapted to real-time therapy
are electrical stimulations. Direct brain stimula-
tions for the control of epileptic seizures have been
already tested, although several questions have not
been answered: where and when should the stimu-
lations be applied? Should they be done regularly or
only in relation to emergence of epileptic activity?
In this second option, seizure anticipation offers,
in principle, the possibility of delivering precise
electrical stimulations to direct the epileptogenic
activities away from its route toward the seizure.
This has been already done in rat’s hippocampal
slices by using nonlinear control (79) or adaptive
electric field (80).

4. Self-control: An important alternative is that a pa-
tient could learn to discriminate early signs of
the preictal activity and subsequently generate
cognitive/behavioral responses to suppress the
epileptogenic processes. In this case, seizure an-
ticipation might serve as the introduction of learn-
ing paradigms, and subsequent behavioral interven-
tions on the seizure may be assessed by the research
with EEG feedback and instrumental conditioning
of EEG patterns (78,81). One difficulty in determin-
ing prodromic sensations is that the patient could
well experience a warning signal but may have dif-
ficulty in remembering this symptom because of
postictal amnesia. A recent study, however, showed
that detailed self-observation achieved a significant
reduction of seizures and can contribute to improv-
ing long-standing intractable epilepsies (82).

CONCLUSION

Although the field of seizure anticipation is still in its
infancy, there is good reason to be optimistic about the de-
velopment of robust method for seizure anticipation. The
findings are promising to characterize in formal terms the
preictal state, and thus to determine the necessary condi-
tions for the occurrence of a seizure. Of course, longer

time scales may be useful for better characterization and
understanding of mechanisms of generation and timing of
epileptic seizures. Nevertheless, on the basis of the present
results, our understanding of the mechanism that under-
lies the generation of seizures has progressed to the point
where it is clear that most seizures are unlikely to arise
from random fluctuations from the background brain ac-
tivity. Seizures cannot be regarded in isolation but require
a process of changes in brain dynamics that starts long be-
fore its manifestation. In particular, our analysis of preictal
synchronizations reaffirms the point that epileptic seizures
do not occur in a behavioral vacuum, but that the inte-
grated, normal functioning of the brain before the seizure
occurs is critical. Seizure foci are surrounded by pools of
neurons functioning in a local and large-scale interactions
and are “pulled” into the seizure discharge once the seizure
has started. From our recent observations, we hypothesize
that the preictal period may reflect the dyssynchronization
of a specific population of neurons. They are not fully
incorporated into normal synchronization processes and
define a state of increased susceptibility for pathologic
synchronization, which acts as a route to the seizure. De-
velopments of nonlinear techniques that can identify the
directionality of information flows (64,83) are expected to
contribute further to an improved understanding of spatial
extension of the preictal phenomena.
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