
ANIMAL MODELS OF SEIZURES
AND EPILEPSY: WHAT IS THE

QUESTION?
An editorial (1) began to summarize one of the key issues in
experimental models of seizures and epilepsy: how close does
your model need to be to the true human condition in order to
reach valid translational conclusions? In other words, is the
best model for a cat actually a cat, preferably the same cat (2),
or will a dog do because it also has fur? To some extent the
differences between the cat and dog are irrelevant, as our
understanding of the mechanisms of brain processes from
development to learning and memory in healthy and diseased
states are still in their infancy. The first step, undoubtedly, is to
define the pertinent questions. For the pediatric epilepsies, this
has been approached in a workshop “Models of Pediatric
Epilepsies” sponsored by NIH/NINDS, the American Epilepsy
Society and the International League against Epilepsy (3).
Those questions were as follows: (i) what are the long-term
consequences of seizures? Can these be modified? and (ii)
what is the best anticonvulsant therapy? What is the best
antiepileptogenic therapy? From these questions, the mecha-
nisms of seizure initiation, prolongation, and termination can
be addressed, and their sequelae defined. Further, the mecha-
nisms underlying the development of spontaneous repetitive
seizures (SRS) (epileptogenesis) and associated cognitive dys-
function can begin to be addressed. The mechanisms by which
modifiers such as genetic background, developmental stage,
and other insults (hypoxia, trauma) may also be differenti-
ated. From this, the committee proposed a table listing general
strategies for model development (Table 3.1). In brief, models
should be clinically relevant, developmentally appropriate,
and generalize to a human condition (i.e., have validity).

While entire volumes have been devoted to the subject of
this chapter (4,5), we will review the literature involving only
a subset of the issues that seem pertinent to a text on clinical
epilepsy. Following a review of synaptic transmission mecha-
nisms, we will focus on the methods for invoking status
epilepticus (SE) (a “prolonged” single seizure) via chemocon-
vulsants; single, repetitive, or prolonged seizures via hypoxia,
temperature, kindling, or chemoconvulsants; and seizures
induced by trauma or genetic alterations. The process by
which the initial insult (seizure, SE, or other) may lead to
spontaneous SRs (epilepsy) has been the subject of intense
study and multiple reviews have been put forth (6,7).
Consensus regarding the relationship (cause or effect?) of
sclerosis and network reorganization to this process has not
been forthcoming. Overall, the field has significantly shifted

from a descriptive to a mechanistic focus involving key recep-
tors, enzymes, and genetic regulation.

GENERAL MECHANISMS OF
TRANSMISSION AND NETWORKS

Seizures can be defined as paroxysms of abnormal, rhythmic,
synchronized discharges in the brain. Communication in the
nervous system is a combination of electrical and chemical
signaling with a balance between excitation and inhibition in
each, primarily mediated between neurons. Glia modulate both
types of communication primarily on a local basis, but fre-
quently with distant consequences. While neurons are largely
polarized structures favoring directed communication (an input
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STRATEGIES FOR ANIMAL MODEL DEVELOPMENT

TA B L E  3 . 1

1. Address a clinical need for better therapies
2. Address a key question or testable hypothesis
3. Address age specificities of developmental epilepsies and

exhibit age-specific manifestations
4. Address normal aspects of development as they relate to

models of developmental epilepsies
5. Animal models of seizures and epilepsy should have EEG

correlates; spontaneous seizures should be demonstrated
in animal models of epilepsy

6. Investigate etiology and natural history of catastrophic/
intractable epilepsies

7. Address role(s) of “multihit” mechanisms in epileptogenesis
and epilepsies, that is, trauma plus seizure or environment/
diet plus genetic susceptibility

8. Address long-term role of seizures and other aspects of
epileptic encephalopathies

9. Address model validity to clinical situation by compar-
isons with pharmacologic response, seizures phenotypes,
outcomes, genetics, and so on

10. Allow cross-pollination from related fields: ischemia,
sleep, trauma, synaptic plasticity, cancer/cell-signaling,
and so on

Modified from Stafstrom CE, Moshe SL, Swann JW, et al. Models of
pediatric epilepsies: strategies and opportunities. Epilepsia.
2006;47:1407–1414.

SECTION B ■ EPILEPTOGENESIS, GENETICS, 
AND EPILEPSY SUBSTRATES

CHAPTER 3 ■ EXPERIMENTAL MODELS OF SEIZURES
AND MECHANISMS OF EPILEPTOGENESIS
T. A. BENKE AND A. R. BROOKS-KAYAL

59377_ch03.qxd  6/30/10  6:46 PM  Page 20



Chapter 3: Experimental Models of Seizures and Mechanisms of Epileptogenesis 21

end and an output end), this is not always the case and how this
may change is clearly relevant to seizures. As electrical units,
neurons depend on membrane-embedded protein ion channels
to maintain their membrane in a polarized state in which, at
rest, the inside of the neuron is electronegative compared to the
outside. Each ion channel has its own relative ion selectivity and
the net directional flux of ions (which depends on both the con-
centration of ions on either side of the membrane and the mem-
brane polarity or voltage) determines whether this flux will
move the neuronal membrane voltage toward, or away from,
its resting state. Ionic channels transition between opened and
closed states. This gating can be modulated by membrane volt-
age (voltage-gated channels [VGCs]) and/or the binding of
external or internal chemical ligands.

Synaptic transmission is the process by which neurotrans-
mitters (ligands) released from a neighboring neuron diffu-
sively move toward another neuron and bind to receptors on
that neuron. Ligand binding to a receptor can result in channel
opening within the receptor or lead to the ligand-bound recep-
tor interacting with a separate protein, often another channel,
as in the case of G-protein-coupled receptors (GPCRs).
Neurotransmitter release involves many tightly linked
processes. Only specialized structures and regions are involved
in neurotransmitter release. Initiation of release involves either
local voltage-gated mediated polarization changes or second
messenger systems activated by neurotransmitters themselves.
Vesicles, membranous spheres filled with neurotransmitter by
pumps within the vesicular membrane, then fuse with presy-
naptic membranes to release neurotransmitter into the synaptic
cleft that separates the presynaptic neuron from the postsynap-
tic neuron. Less commonly, neurotransmitters may be directly
pumped into the cleft. Neurotransmitters are either enzymati-
cally degraded in the cleft or pumped out of the cleft by trans-
porters into the presynaptic terminal, postsynaptic neuron, or
surrounding glial support cells. From there it is either enzymat-
ically broken down, recycled and shuttled across membranes,
resynthesized or pumped backed into vesicles.

The resulting ionic flux(es) can have several simultaneous
consequences. Some ions only affect membrane voltage while
certain ions (e.g., calcium) also act as second messengers by
activating calcium-dependent enzymes. These enzymes can then
exert a cascading effect on ion channels and other enzymes,
including those that influence membrane shape and scaffolds
that hold and direct protein location (i.e., internal versus exter-
nal, synaptic versus extrasynaptic), protein translation, protein
degradation, and RNA transcription. 

Neurons are three-dimensional structures with compart-
ments (dendrite, axon, and soma) and subcompartments in
each (e.g., main dendrite, branch, spine; axonal hillock, axon,
branch, terminal), and the precise temporal and spatial regula-
tion of neuronal function is mirrored by the segregation of
unique, but often similar, ion channels and enzymes to distinct
subcompartments. For instance, the molecular diversity of
potassium channels, each coded by different genes and often
many splice variants, reflects the unique functional needs or
duties of each subcompartment where they may be selectively
located and regulated. Neurons themselves are also segregated
as inhibitory or excitatory, depending on the type of neuro-
transmitter(s) they may (predominantly) release. Each class of
neuron may also express a unique complement of ion channel
and receptor subtypes resulting in incredible diversity of neu-
ronal function.

The resulting cascade, beginning with receptor activation,
followed by alterations in membrane polarization, potentially
loops around to result in alterations of the properties of the
initial trigger of receptor activation. Consideration of this sim-
plistic mechanism is important. Such a loop likely underlies
normal plasticity associated with processes like learning and
memory, but perhaps becomes unstable with seizures and
epileptogenesis, leading to aberrant plasticity that could result
in both seizures and cognitive dysfunction (Fig. 3.1).

Glutamatergic Ion Channels

At the synaptic level, most excitatory amino acid transmission
in the central nervous system (CNS) is mediated by the activa-
tion of families of glutamate-activated ligand-gated cation
channels classified according to their preferred agonists:
kainate, �-amino-3-hydroxy-5-methyl-4-isoxazole propionate
(AMPA), or N-methyl-D-aspartate (NMDA) (8). To date, nine
subunit subtypes and related isoforms have been cloned with
pharmacology in in vitro expression systems similar to the
AMPA (GluR1-4) and kainate receptors (GluR5-7, KAR1-2)
(9–11). Similarly, five subunit subtypes and related isoforms
have been cloned with pharmacology in in vitro expression
systems similar to NMDA receptors (NR1, NR2A-D) in vivo
(12–16). Some subunit-specific interactions and their role in
synaptic transmission have been shown (17–22).
Metabotropic glutamate receptors (mGluRs) are GPCRs
broadly divided into three classes (Groups I–III) (23).
Epileptologists are becoming increasingly interested in
ionotropic glutamate receptors as the anticonvulsants topira-
mate, felbamate, and talampanel likely interact with these
receptors. In addition, Group I mGluR agonists or Group II
mGluR antagonists are thought to have both anticonvulsant
and antiepileptogenic potential (24). Since these modulatory
receptors do not directly participate in fast excitatory synaptic
transmission, it is hoped that targeting these receptors may be
effective with fewer side effects compared to agents that
directly modulate GluRs and NRs.

Calcium influx through NRs is thought to mediate the
calcium-activated processes involved in long-term potentiation
and depression (LTP and LTD) (25–29), neurite outgrowth
(30), synaptogenesis (31), and cell death (32–34). LTP and
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FIGURE 3.1 Proposed cascade of events following a seizure leading
to any potential adverse sequelae (status epileptics, epileptogenesis,
learning impairment, etc.).
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LTD are thought to be synaptic models of learning and memory
(35). “Induction” of LTP/LTD is thought to take place when
synaptically activated NRs allow calcium entry and accumula-
tion in the neuron. In order for this to happen, the nearby
region of dendrite must be sufficiently depolarized by synaptic
activation of GluRs to alleviate the magnesium-dependent
block of NRs. “Expression” of LTP/TD is thought to occur
when calcium activates a cascade involving protein phospho-
rylation and dephosphorylation resulting in modifications in
synaptic strength (36).

While other possible mechanisms exist (35,37–40), postsy-
naptic changes in GluR subunit numbers (40–42) or proper-
ties (42) are thought to underlie synaptic modification. This
has resulted in postulated “subunit rules”: (i) for AMPA-type
GluRs, synaptic removal of GluR2 subunits drags along
GluR1 and GluR3 which underlies LTD, (ii) GluR1 or GluR3
not associated with GluR2 (“homomers”) act independently,
(iii) insertion and/or modification of GluR1 underlies LTP
(43). It is likely that the regulation of GluR subunits and mea-
sured properties are exquisitely intertwined (44). Knockout
studies of GluR1 (45) and GluR2 (46,47) have shed further
light on the relationship of LTP and LTD to behavioral testing
of learning and memory such as the Morris Water Maze
(MWM). GluR1 knockouts have impaired LTP and LTD with
normal MWM testing (48). However, on spatial working
memory tasks, they are significantly impaired (48,49).

It has now been shown that AMPA-type glutamate recep-
tors can not only participate in calcium-dependent plasticity,
but can also, as a result of plasticity, alter their subunit com-
position (50,51). Since initial cloning studies, it has been
known that GluR2-lacking receptors flux calcium (52), allow-
ing for this to occur. Either downregulation of GluR2 or
upregulation of GluR1 would potentially lead to more homo-
meric, calcium-permeable GluRs. This contributed to the
“GluR2 hypothesis” (53,54) whereby preferential removal of
GluR2 (with no changes in GluR1) can lead to AMPA-type
glutamate receptors that flux calcium.

Kainate receptors have now been proposed to be involved
in plasticity at mossy fiber (MFs) synapses independent of
NRs (55–57). They share with NRs the cardinal feature of
plasticity, namely that they can be highly permeable to the sec-
ond messenger calcium (58). Kainate receptors at other
synapses in the hippocampus and cortex (58–60) may also
participate in the induction of plasticity in this fashion.

Glutamate Receptors and Development

Developmentally and regionally specific patterns of expres-
sion of the different glutamate receptors and their isoforms
have been shown (61–63). NRs appear before GluRs, even
prior to the appearance of dendritic spines (64). NR2B-
containing receptors appear first with slower kinetic proper-
ties, followed by NR2A (after week 1 in the rat) with faster
kinetic properties (65,66). In the rat hippocampus, GluR1 and
GluR2 primarily exist in a flip isoform prior to adolescence but
begin to exist in a flop isoform during adolescence (2–4 weeks
of age) (63). These and other related isoforms each have
unique kinetic properties (67,68). The mechanisms underlying
synaptic plasticity thus vary as the animal ages (69–74) and are
partly dependent on anatomic location (72,75–77). LTP
remains largely dependent on NRs throughout development.

However, LTD in the hippocampus develops from mostly NR-
dependent forms to include NR-independent forms as the ani-
mals age (78,79). These NR-dependent and NR-independent
forms are differentiated by the effectiveness of different chem-
ical and electrical LTD inducing stimulation paradigms
(78–83). Visual development coincides with changes in gluta-
mate receptor composition at thalamo-cortical synapses (84),
which has also been shown in the auditory system (85). It
appears that calcium permeable or GluR2-lacking receptors
are a feature only of early development (84,86–88).

Subsynaptic Machinery Regulating
Insertion, Removal, and Maintenance

of Glutamate Receptors

The expanding role of the subsynaptic scaffolding that inter-
acts with glutamate receptors has been the subject of intense
investigation (89–91). The central organizer appears to be
PSD-95 (and related proteins), which contains a sticky tail of
PDZ domains. These interactions are thought to regulate the
function and targeting of glutamate receptors by tethering
them at the synapse and by holding various regulatory kinases
and phosphatases in proximity. NRs interact directly with
PSD-95 through PDZ domains. GluRs can interact with the
PDZ domains of PSD-95 (92) through TARPS (93). Interaction
of GluR2 with NSF and GRIP1 seems to hold receptors in the
synapse, while interaction with PICK1 removes them to
extrasynaptic and subsynaptic or vesicular holding areas
(94,95). GluR1 interacts (through a linkage with SAP97, a
PSD-95 family member) with AKAP79/150 (96). AKAP79/150
links the complex with PKA (96,97), calcineurin, and the actin
cytoskeleton (98). These interactions are thought to bring
GluRs to synapses and upregulate them in LTP (99–101) and
remove them in LTD (97,101–103). In LTD, the complex dis-
sociates and moves out of dendritic spines (98). These mecha-
nisms may be unique to the CA1 region of hippocampus where
AKAP79 is primarily expressed (104).

GABAergic Ion Channels

Gamma-aminobutyric acid (GABA) is the main inhibitory neu-
rotransmitter in the adult brain. Epileptologists have been
interested in this system because commonly prescribed anti-
convulsant drugs, such as phenobarbital, the benzodiazepines,
and to a lesser extent valproate, topiramate, and levitiracetam,
reduce seizure activity by augmenting GABA receptor activity.
The GABAergic system consists of three main receptor sub-
types: GABAA, GABAB, and GABAC. GABAA receptors
(GABARs) are primarily located postsynaptically and mediate
most of the fast synaptic inhibition in the brain. They are anion
selective and gate primarily chloride, although under certain
circumstances they may also gate bicarbonate. GABAA recep-
tors are heterogeneous complexes composed of multiple pro-
tein subunits. Numerous subtypes exist for each subunit (�1–6,
�1–3, �1–3, �, ε, �, �, and �1–3). The most common in vivo
GABAR subunit composition is two �, two �, and one � sub-
unit. There is remarkable receptor heterogeneity, with subtype
combinations varying in different brain regions, cell types, and
during different times in development (105–108). Different
subunit subtypes and the wide variety of combinations confer
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distinct functional and pharmacological properties to the
GABARs (105). The � subunit, for example, is required for
GABAA receptors to be responsive to benzodiazepine-type
drugs, whereas the � subunit subtype determines the type of
the benzodiazepine binding site (e.g., type I or II) (109,110).
Brain regions that express the highest concentration of the �1
subunit have a correspondingly high number of type I benzodi-
azepine binding sites and are, in turn, more sensitive to zolpi-
dem-induced augmentation and less sensitive to zinc-induced
inhibition (111–113).

GABAB receptors are G-protein-linked metabotropic
receptors that are located both presynaptically and postsynap-
tically and are responsible for slower, more long-lasting
inhibitory currents. Like GABAA receptors, they are com-
posed of multiple subunits, primarily R1 and R2, which have
additional diversity due to splice variation. Also like GABAA,
GABAB receptors are widely distributed in the CNS, particu-
larly in the hippocampus, cerebellum, and thalamus. In con-
trast, GABAC receptors are located primarily in the retina and
do not appear to play a significant role in epilepsy.

The function of the GABAergic system differs markedly in
the mature and immature brain. While GABAA receptor acti-
vation results in neuronal hyperpolarization and an inhibition
of cell firing in the mature brain, receptor activation results in
membrane depolarization and excitation in the immature
brain (114–116). The switch from GABA-mediated excitation
to inhibition is related to changes in the chloride gradient that
occur during the course of development (117–122). In mature
neurons, the intracellular concentration of chloride is low due
to the presence of KCC2-extruding transporters. When
GABAA receptors are activated, chloride flows, according to
its concentration gradient, into the cell; this causes membrane
hyperpolarization and hence an inhibitory postsynaptic
response. In contrast, intracellular concentrations of chloride
are high in immature brain due to the combined effects of low
KCC2 expression and the presence of NKCC1 transporters
that actively carry chloride into the neuron. When GABAA
receptors are activated, ion channels open, chloride flows out
of the cell, and depolarization occurs. In rodents, KCC2
expression is very low during the first two postnatal weeks. By
inference, it is thought that KCC2 expression is low in
humans until around the end of gestation (123).

A number of laboratories have shown that depolarizing
(e.g., excitatory) GABA currents are critical for the develop-
ment of calcium-dependent processes, such as neuronal prolif-
eration, migration, targeting, and synaptogenesis (124–128).
In addition, there is evidence suggesting that GABAR-mediated
currents also play a critical role in the generation of ictal activ-
ity in the developing brain. It has been known for some time
that synchronous neuronal activity in the hippocampus can be
driven by GABAA receptor activation and inhibited by GABAA
receptor blockade (129). More recent evidence, however, sug-
gests that GABAR-mediated excitation may drive ictal activity
in the developing hippocampus as well (130,131).

Plasticity and Trafficking 
of GABAergic Receptors

During the process of epileptogenesis in animal models there
are alterations in the expression and membrane localization
of several GABAR subunits (�1, �4, �2, �) in hippocampal

dentate granule neurons (132–134). These alterations, which
are associated with changes in phasic and tonic GABAR-
mediated inhibition, and in GABAR modulation by benzodi-
azepines, neurosteroids, and zinc, begin soon after SE and
continue as animals become epileptic (132–135). Several labo-
ratories have documented similar changes in GABAR subunit
composition in human temporal lobe epilepsy (TLE) and in ani-
mal models of TLE (132,134,136,137). In the pilocarpine
model of SE in adult rodents, GABAR �1 subunit mRNA
expression decreases, �4 subunit mRNA expression increases in
dentate granule cells (DGCs) of the hippocampus, and animals
uniformly go on to develop the recurrent spontaneous seizures
that define epilepsy (132). The change in subunit expression
correlates with a decreased sensitivity to zolpidem augmenta-
tion and increased sensitivity to zinc inhibition of GABAR
responses (132). Similar functional and subunit expression
changes have been observed in DGCs isolated from surgically
resected hippocampus from patients with intractable TLE
(137). The changes in GABAR subunit expression and function
in DGCs of adult epileptic animals precede the development of
epilepsy and immature animals exposed to prolonged induced
seizures show increased GABAR �1 subunit expression and do
not subsequently develop epilepsy (138), suggesting that
GABAR changes contribute to the epileptogenic process. Viral
gene transfer studies demonstrating that the expression of
higher �1 subunit levels inhibits development of epilepsy after
SE provide further evidence in support of this (139).

Voltage-Gated Ion Channels

Generically, voltage-gated sodium channels (VGSCs) and
voltage-gated calcium channels (VGCCs) are excitatory or
depolarizing. VGSCs are somewhat broadly lumped as they
each function similarly, with subtypes segregated to unique
neuronal populations and subcompartments. However, some
VGSCs have unique deactivation characteristics, often pro-
longed or “reverberant” resulting in unique signaling proper-
ties. VGCCs are segregated according to their biophysical
properties (T, P/Q, N, and L/HVA-type) and like VGSCs are
often segregated to unique neuronal populations and subcom-
partments. Voltage-gated potassium channels (VGKCs) are
typically inhibitory or hyperpolarizing; however, depending
on their voltage-dependent gating and subcellular location
they can have the opposite influence on membrane potential
(e.g., HCN or Ih). VGCs often share the same or similar tar-
geting motifs and scaffolds that regulate the expression and
targeting ligand-gated ion channels (140).

Neuronal Networks

Neuronal networks refer to the detailed web of connections of
inhibitory and excitatory neurons within the different regions
of the brain. The activation patterns and activity of different
neuronal networks are thought to underlie basic brain function
(141). A significant portion of experimental epilepsy research
has focused on neuronal networks, specifically within the hip-
pocampus. From a simplistic point of view, information pri-
marily enters the hippocampus in a lamellar fashion via the
dentate gyrus, travels from there to the CA3 region, then to
CA1, and then out via the entorhinal cortex; however, it is
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substantially more complicated than this (142,143). The CA3
has an excitatory feedback loop, which participates in normal
learning, but can, however, contribute to seizure generation
(144). The dentate gyrus is thought to limit CA3 excitation by
acting like a filter to incoming inputs (145,146). This is due to
the properties of excitatory inputs into the dentate gyrus as
well as feedback inhibition within the dentate gyrus (143).
Therefore, much research has focused on determining the
nature of these mechanisms and how they have been poten-
tially subverted in experimental models to result in epilepsy.

REVIEW OF TECHNIQUES

Experimental models can be divided into whole-animal
(in vivo) versus in vitro studies. Whole-animal models of
acquired epilepsies typically involve single or multiple treat-
ments to the animal that produce some form of injury or stimu-
lation that results in later development of spontaneous seizures.
Examples of these induced injuries include SE (chemoconvul-
sant and electrical), kindling, hypoxia, and head trauma. In
genetic models, a spontaneous or induced genetic mutation or
deletion results in seizures that happen spontaneously. Seizure
activity must be carefully defined for several reasons. First, the
definition of a seizure is often extremely variable, as in the
clinical literature. Second, consciousness, routinely used as a
modifier in describing clinical seizures, is arbitrarily defined in
most animals used. Typically, rhythmic, stereotyped, altered
behavior is observed and characterized as seizure activity. As
in the clinical literature, EEG has become the gold standard
for correlating altered behavior with seizures, but its use is
limited due to the time and labor-intensive placement of elec-
trodes, limitations of electrode stability over time, and the fact
that electrographic seizures emanating from deeper structures
can be missed when recording from the cortical surface.

In Vitro Versus In Vivo Models

In vitro studies involve removal and subsequent manipula-
tions of whole-brain structures, slices of brain structures or
isolation, and culture of separated brain cells (neurons and
glia). These studies allow detailed manipulations and mea-
surements but are limited in a key way. While it is tempting to
designate repetitive electrical discharges as a seizure, seizures
defined in the whole animal are associated with a change in
behavior or sensation which cannot be appreciated in these in
vitro models and thus must be referred to as “seizure-like”
events or an ictus to avoid confusion. One researcher’s abnor-
mal ictal-induced phenomena may also be interpreted as
another researcher’s normal activity-dependent changes. In
addition, certain seizures, and their sequelae, may involve the
interplay of multiple brain structures and are thus difficult if
not impossible to recreate in in vitro models. Finally, key
processes such as development and epileptogenesis which
occur over a prolonged period of time cannot be fully studied
in in vitro models as they are limited by the length of time the
in vitro preparation is viable (hours to weeks).

There are dozens of in vivo and in vitro models of seizures
and epilepsy and as mentioned earlier there is little consensus
about which if any are the “optimal model”. In reality, each
model has its strengths and limitations, and the relative benefits

depend on the specific question being asked. Below, we focus on
the models that are in common use or emerging.

Pilocarpine and Kainate Models

The pilocarpine and lithium pilocarpine model (147) involves
the systemic administration of a muscarinic acetylcholine ago-
nist (pilocarpine) to induce a prolonged electrographic and
behavioral seizure that requires cessation by benzodiazepines or
barbiturates, typically after 1–2 hours, in order to prevent ani-
mal mortality. Clearly, from a clinical standpoint, this is never
the cause of SE in humans. Nevertheless, it is widely used
because it results in severe SE and eventually develops an epilep-
tic phenotype with features very similar to human TLE resulting
in its widespread use for studying both of these conditions.

Kainate, a glutamate analogue that is not metabolized, is
either injected systemically or directly into the brain and can
result in seizures lasting several hours (148,149). Clinically,
kainate originates as a shellfish poison whereby human toxic-
ity during outbreaks results in seizures and in severe cases hip-
pocampal sclerosis (150). While this clinical situation is
extremely rare, conditions involving glutamate overload that
are known to be associated with seizures such as stroke,
hypoxia (151,152), or infection may be mimicked to some
degree by kainate administration. Similar to the pilocarpine
model, because kainate results in SE, though probably not as
severe as pilocarpine, and adult animals eventually develop an
epileptic phenotype with features very similar to human TLE,
it is widely used for studying both these conditions. In
youngest animals, kainate primarily activates the hippocam-
pus while in older animals its effects are widespread (153).

Brief Seizure Models

Pentylenetetrazole and flurothyl are GABAergic antagonists
that are administered systemically or inhaled, respectively
(154). They both induce relatively short seizures, with flurothyl
being very brief and limited nearly to the length of exposure to
the vapors. As a result, both agents are used to mimic condi-
tions involving single or multiple brief, generalized seizures
(155). The major limitations of these models are that the mech-
anism of seizure induction does not clearly parallel any human
condition, and the animals never develop spontaneous seizures.
Both agents are thought to act on all susceptible brain regions,
including cortex and hippocampus (154). Electrical kindling,
whereby electrodes are implanted in order to stimulate select
brain regions, can also be used to study how repeated, brief
seizure-like activity can influence outcomes. Depending on the
stimulation protocol, eventually kindling can lead to SE. This
model, however, is limited by the technicalities of long-term
implantation in rodents and the fact that most kindling para-
digms do not result in development of spontaneous seizures.

Clinical Models: Fever and
Hypoxia/Ischemia

In models where seizures are induced in the setting of
increased temperature (fever), hypoxia, and/or ischemia, the
ability of these models to generalize to human pathologies is
clearly evident. Hypoxia models can involve placing animals
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in an environment of reduced oxygen content until seizures
are observed (156,157). Other methods involve single or
multiple cerebral vessel occlusions, often in combination
with exposure to an environment with reduced oxygen con-
tent. Methods involving vessel occlusion are often time-
intensive. These methods are then limited by the elements of
hypoxia and ischemia, as these may independently influence
outcomes (158). Temperature-induced seizures in developing
animals (159,160) involve slowly heating the animal, typi-
cally with warmed air, until seizures are initiated. This model
is gaining popularity as a model of febrile seizures but may
be limited by the fact it is really a model of externally
imposed hyperthermia rather than endogenous fever as
occurs in the human condition.

Toxin Models

Several models involve direct infusion of toxins, compounds,
or even genetic material into specific regions such as the hip-
pocampus. These are each meant to model focal seizures or
epileptogenesis, though the result can have distant effects.
These include the tetanus-toxin model (161) and more
recently the tetrodotoxin model (162), thought to be a model
of infantile spasms or West syndrome. Knockdown of GluR2
by injection of antisense probes results in acute seizures (163).
Following withdrawal of direct injection of glutamate recep-
tor antagonists, spontaneous seizures are provoked in imma-
ture animals, while systemic injection does not cause this to
happen (164).

Trauma Models

Experimental models of trauma utilizing either direct impact
methods (165) or surgical undercuts (166) have been recently
reviewed as models for studying the development of post-
traumatic epileptogenesis and epilepsy. As head trauma is a
common cause of acquired epilepsy in humans, these models
seem very generalizable to human pathology. As a result, these
models have been used extensively to study the efficacy of
anti-epileptogenic compounds as well as the mechanisms
underlying post-traumatic epileptogenesis.

In Vitro Models

In vitro methods involving brain slices or cultures use a vari-
ety of methods to induce seizure-like electrical events. These
can involve perfusion of compounds that typically enhance or
favor membrane excitability alone or in combination with
electrical stimulation, akin to kindling. The resulting sponta-
neous neuronal-mediated discharges can then be recorded
from groups of neurons or from individual neurons typically
using electrophysiological techniques. Imaging techniques
using fluorescent dyes that are able to indicate changes in
membrane voltage or secondary changes due to accumula-
tions of specific ions, such as calcium, often complement elec-
trophysiological measurements as they are able to simultane-
ously record from populations of neurons that may be
somewhat distant from each other. The pattern of these dis-
charges is then interpreted either in isolation, in groups or
bursts, or when the bursts cluster together as an ictus. The

transitions between these types of discharges are interpreted
as indicative of ictal genesis and are thought to generalize to
seizure genesis. When the ictus is prolonged, this generalizes
to SE. When the ability to generate an ictus becomes more
facile, this is thought to generalize to epileptogenesis.
Determining how excitation spreads through a slice of brain
tissue is generalized to how it may spread in the intact prepa-
ration. Thus, application of anticonvulsants to an in vitro
preparation has been used to determine their efficacy and pre-
cise mechanism(s) of action. In order to circumvent the issues
of truly generalizable seizures, SE or epileptogenesis in vitro,
brain slices are often prepared at various time points after
these phenomenon have developed in vivo. Findings from
hippocampal brain slices prepared from animals after experi-
encing an induced or spontaneous seizure in vivo allow exam-
ination of how overall synaptic transmission, plasticity, and
seizure thresholds have become altered by these processes
(Table 3.2).

MECHANISMS OF SE

Here, there are two basic questions: why did the seizure not
stop by itself and why is SE more difficult to stop with anti-
convulsants than a single seizure? Was the underlying neu-
ronal network susceptible to this happening or did it
become dynamically changed to allow its progression?
Given that it has been found that the clinical situation is
mimicked by the experiment in which benzodiazepines lose
their potency as the seizure progresses (167), much effort
has focused on the role of GABAR and inhibitory synaptic
transmission (168). These questions have been approached
in a variety of ways, using in vitro brain slices or in vivo
models employing pilocarpine, kainate, or kindling, some-
times in combination with in vitro brain slices prepared
during or after the event. Recent studies suggest that during
SE, GABARs at inhibitory synapses onto granule cells of the
dentate gyrus are removed from synaptic sites and moved to
extrasynaptic sites and internal pools (169) in a subunit-
specific manner (170). This likely minimizes their effective-
ness in both self-termination of the seizure as well as the loss
of effectiveness of benzodiazepines, in part mediated by loss
of �2 subunits that modulate benzodiazepine sensitivity.
These issues are complicated during development in the
CA3 region of the hippocampus, where GABAergic
synapses are depolarizing and thus contribute to the devel-
opment of ictal activity (130,171).

The alterations in GABARs in the dentate gyrus are possi-
bly mediated by NR activation rather than by direct activation
of GABARs (170). It has been found that blocking NRs pre-
vents the progression to drug-resistant SE (172). NRs then
further contribute to the process as they are progressively
recruited to synaptic sites as SE progresses (172). While in
vitro studies suggest that NRs and GluRs are involved in
epileptogenesis (173–175), it is possible that their contribu-
tion to this process may be mediated by their effects on SE.
Reductions in GluR2 in CA1 and CA3 (176,177) 6–48 hours
after SE, while implicated in cell death after SE, may have also
contributed to prolonging SE, perhaps through facilitated
GluR function (178). Excess glutamate, which may occur with
transporter dysfunction, has been shown to lead to NR activa-
tion and seizures (179); however, this may be limited to
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developing animals in which glial regulation of extracellular
glutamate by transporters is immature (180). Indeed, multiple
genes, including those involved in transcription, are likely
regulated following SE (181).

EPILEPTOGENESIS

Epileptogenesis refers to the process by which a previously
“normal” brain becomes capable of producing SRS. Animal
models have typically employed prolonged SE to trigger this
process; however, models of trauma and injections of toxins
have also been used (see Review of Techniques). The nature
and mechanisms of this process have each been richly studied.
Does this happen gradually, that is, what is the significance of
the latent period between trigger and first SRS? This is a criti-
cal question as it might represent a window of opportunity for

intervention. What is the relationship of the sclerotic pathol-
ogy, often seen in human TLE and also seen in animal models,
to this process? How much of the process is due to network
rewiring versus changes in neuronal and/or synaptic function?
What are the signaling cascades mediating these processes and
how can they be circumvented or reversed?

The appearance of SRS has been taken to indicate the end
of the latent period. Enhanced excitability has been shown to
gradually develop prior to the appearance of SRS (182), sug-
gesting the end of the latent period is not a stepwise function
into SRS and epilepsy. In support of this, an intensive video-
EEG monitoring study has challenged the notion of the latent
period by showing that the progression into SRS and epilepsy
is a sigmoid function of time (183). In other words, after the
first SRS, epilepsy continues to progress. Progression clearly
represents a worse-case scenario that may not always be
present (184). Additional work is needed to determine where
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ANIMAL MODEL SUMMARY

TA B L E  3 . 2

Model Questions addressed

Pilocarpine and kainate • SE: consequences, treatment, role of development
• TLE and epileptogenesis: hippocampal networks,

mechanisms and therapies
• “Multihit” models

Pentylenetetrazole and flurothyl • Multiple brief seizure models: mechanisms of 
epileptogenesis

• Treatment of brief seizures
• Role of development on long-term consequences
• “Multihit” models

Temperature • Febrile seizures in children: mechanisms and therapies
• Role of development and long-term consequences
• Epileptogenesis
• “Multihit” models

HIE • True “multihit” model
• Role of development and long-term consequences
• Epileptogenesis: mechanisms and therapies
• Focal epilepsy and epileptogenesis: therapies

Toxins: tetrodotoxin • Infantile spasms: mechanisms & therapies
and NMDA • Role of development and long-term consequences

• Treatment
• Epileptic encephalopathies

Toxins: tetanus toxin • Focal epilepsy and epileptogenesis: therapies
• Role of development and long-term consequences

Trauma • True “multihit” model
• Role of development and long-term consequences
• Focal epilepsy and epileptogenesis: mechanisms and

therapies
In vitro models • SE: consequences, treatment, role of development

• Role of development
• Synaptic and therapeutic mechanisms, especially when

coupled with in vivo models
Genetic models • Catastrophic epilepsies: genesis, therapy, long-term

consequences
• Linkage of human mutations with synaptic and electri-

cal mechanisms in seizures and epilepsy
• “Multihit” models
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and whether there is a window for interventions to prevent
this progression. Interestingly, there is a transient period fol-
lowing pilocarpine SE in adult animals when GABAergic inhi-
bition becomes excitatory in some brain regions due to loss
of normal chloride regulation (185), suggesting that chloride
regulation may be a potential therapeutic target.

Network Reorganization

Network reorganization in the hippocampus has been exten-
sively studied as one of the presumed origins of SRS because of
similar findings in human TLE. Primarily this has focused on
the output of DGC neurons and has been thoroughly reviewed
(143,147,186). Excitotoxic loss of mossy cells (187) in the
denate gyrus may lead to sprouting of dentate axons, known as
mossy fibers (MFs). The sprouted MFs make aberrant excita-
tory connections locally in the dentate gyrus and distantly in
CA3 creating an abnormal excitatory feedback circuit (188).
These abnormal connections are further dysfunctional, with a
higher probability of activation, a larger NR component
(189,190), and recruitment of kainate receptors (191). These
disturbances, coupled with permanent alterations in GABARs
(see below), are thought to result in a circuit prone to trigger
seizures in other regions, such as CA3 (143). Not without con-
troversy, MFs and SRS have not been proven to be either
necessary or sufficient for the development of TLE (7,192).
Further aberrant circuits have also been described originating
in CA3 (193) and CA1 (194–196). In trauma-induced epilepsy,
aberrant connections are formed in the region of injury as well
as the hippocampus (6,165,166). In the region of injury, dis-
crete regions of apical dendrites have a selective overabun-
dance of excitatory synaptic inputs and connectivity
(197,198), which with alterations in membrane VGC proper-
ties (198) may also contribute to the epileptic state.

Excitotoxic cell loss (which may occur following SE or
other insults) throughout the hippocampus is thought to be
mediated by glutamate toxicity via GluRs (176,199) and NRs
(200). Secondary reactive gliosis may also contribute to synap-
tic dysfunction (201,202). Loss of hilar mossy cells and other
neurons mediating inhibition are thought to be critical poten-
tial contributors to the hyperexcitable steady state of the
epileptic hippocampus. SE also has the paradoxical effect of
inducing neurogenesis in the dentate gyrus (203). Some of the
newly formed neurons may also participate in MFs or other
aberrant circuitry that leads to the epileptic hippocampus
(204), although the exact role of newborn neurons in epilep-
togenesis continues to be studied.

The role of network alterations and other causative phe-
nomena in epileptogenesis appears to be differentially regu-
lated depending on when in development this process is initi-
ated. Kainate-induced SE in adult animals causes, over time,
SRS, CA3 cell loss, MFs into CA3 and dentate gyrus, sprout-
ing into CA1 stratum pyramidale and stratum radiatum, and
impaired learning in memory tasks (194,205,206). Similar
results are found with the pilocarpine model (147,206,207).
However if animals younger than 14 days are treated with
either kainate or pilocarpine, the animals do not develop
spontaneous seizures (see below) (138,208,209). Single or
repetitive episodes of SE in infancy caused by pilocarpine are
not benign, however, and have been associated with long-term
abnormalities of inhibitory neurotransmission (138). Further,

single or multiple episodes of SE induced by pilocarpine at
postnatal day 14 or later does result in SRS (210–212) as well
as deficits in memory and learning that are inconsistently
associated with cell loss and/or MFs (210,212–215). Studies
in other models have not provided additional clarity regarding
the association of cell loss and MFs to development of
epilepsy after early-life seizures. Early-life focal administration
of tetanus toxin results in a chronic epileptic state that
includes memory impairment without cell loss (161) but does
involve MFs (216). In contrast, repetitive flurothyl seizures in
early development result in MFs, but they do not apparently
result in SRS, only a reduced seizure threshold (217–219).
Chronic perforant path kindling is associated with cell loss in
the dentate gyrus (220). Similarly, in prolonged temperature-
induced seizures, MFs gradually develops; however, reduction
in seizure thresholds are seen much earlier and SRS have been
reported only infrequently (221–223). Furthermore, MFs
appears in a model of early-life stress, apparently unrelated to
seizures (224).

Seizure or SE-Induced Alterations 
in Ion Channels

Early studies of in vitro brain slice models indicated that alter-
ations in NRs with the successive prolongation of seizure-like
discharges correlated with epileptogenesis (173–175). The
mechanism of non-NR-mediated calcium influx via calcium-
permeable GluRs is also thought to underlie cell death in adult
models of seizures (176,225–227) and hypoxia (157). GluR1
upregulation has only been found in an adult model of elec-
troconvulsive therapy (228). GluR2 “knockdown” studies
have shown that downregulation of GluR2 can lead to
seizures and hippocampal injury (163). Clinical evidence from
pathological studies might support upregulation of GluR1
(229–231). Seizures or SE in developing animals have found
either no change in GluR2 (199,232) or a downregulation of
GluR2 (157,233) with no changes in GluR1 (234). Recurrent
episodes of kainate-induced SE in developing animals are
associated with a decrease in kainate binding (a reflection of
GluRs as well as kainate receptors) in CA3 but not CA1 (209).
Recurrent flurothyl seizures in developing animals have
shown a long-term reduction in NRs and PSD-95 (235).
Transient alteration in the properties of synaptically activated
GluRs consistent with calcium permeable GluRs following
hypoxic seizures in developing animals has been postulated to
mediate the cascade resulting in later-life alterations in this
model (236). Seizures induced by kainate in infant rats results
in altered LTP, LTD, kindling and learning associated with
enhanced inhibition in the dentate gyrus (237) and mechanis-
tically linked to reduced NR2A, altered trafficking of GluR1
and increased PSD-95 (232).

In adult, epileptic animals following pilocarpine SE,
GABAergic signaling is altered by specific reduction of
GABAA receptor �1 subunits and an increase in �4 subunits
in the dentate gyrus, resulting in a reduction in benzodi-
azepine sensitivity and enhanced inhibition by zinc (132).
(This contrasts markedly to the developing hippocampus
where pilocarpine SE does not result in epilepsy but results in
an upregulation of �1, overall receptor numbers and
enhanced benzodiazepine sensitivity [138].) Altered function
of VGSCs (238,239), T-type calcium channels (240,241),

59377_ch03.qxd  6/30/10  6:46 PM  Page 27



and potassium channels (242) have been described in epilep-
tic animals and are thought to contribute to the epileptic
state. In the hyperthermia model of febrile seizures, a single
prolonged seizure results in permanent susceptibility to con-
vulsants, enhanced in vitro kindling, mechanistically linked
to enhancement of the voltage-gated potassium channel
HCN (222,243,244).

The signaling pathways that regulate the plasticity in ion
channel expression during epileptogenesis are just beginning
to be elucidated. For example, recent studies have demon-
strated that the mechanisms that regulate differential expres-
sion of GABAR �-subunits in hippocampus after SE include
the CREB/ICER, JAK/STAT, BDNF, and Egr3 signaling path-
ways (245). Targeting signaling pathways that alter the
expression of genes involved in epileptogenesis may provide
novel therapeutic approaches for preventing or inhibiting the
development of epilepsy after a precipitating insult.

SEQUELAE BEYOND
EPILEPTOGENESIS

In adult models of epileptogenesis associated with cell loss
and/or MFs, uniformly there is learning and memory impair-
ment when assessed with the MWM, a behavior test used to
assess spatial, long-term memory formation (246). Altered
emotionality is also noted with fear conditioning (247).
Mechanistically, this impairment is thought to be mediated by
the anatomical damage, as similar deficits are observed in
hippocampal lesion studies not associated with seizures or
epileptogenesis (248). Similarly, in immature animals, abnor-
malities in the MWM are associated with histological
changes following repetitive SE (213–215), repetitive
flurothyl seizures (219,249), tetanus toxin (161),
hypoxia/ischemia (250), and hyperthermia (222,243,244)-
induced seizures. In models where immature animals develop
SRS, there is altered emotionality (211). Furthermore,
kainate insult in infancy and again later in adulthood results
in more prominent memory impairment than a single insult at
either time (251). In immature animals following a kainate-
induced seizure, there have not been any detectable problems
with the MWM or histological changes (206,252), including
an absence of MFs; similar findings have been reported for
repeated episodes of kainate-induced SE in immature animals
(209). As adults, these animals have only subtle abnormalities
in the MWM (253) and in more difficult mazes these animals
have abnormalities most consistent with defective working
memory (232,237,253,254); emotionality may be unaffected
(253,254). Thus, permanent impairments in learning and
memory are more severe in animal models when associated with
significant histological abnormalities. However, significant
impairments can also exist without histological abnormalities,
which possibly reflect pathology limited to abnormal synaptic
function isolated to the hippocampus.

GENETIC SUSCEPTIBILITY

Advances in genetics have allowed for several human epilepsy
syndromes associated with single gene defects to be further
characterized (255). Following determination of the analo-
gous gene in mice, similar defects can be introduced through

cloning techniques in order to better understand how epilepsy
develops in these syndromes as well as determine which treat-
ments might be more efficacious. Often, the nature of the
genetic defect, whether it represents a gain or loss of function,
is not clear until the altered resulting protein is expressed in
an intact, cloned animal model. In the animal model of
Dravet syndrome, genetic knock-in of human mutations in
VGSCs (NaV1.1) results in a phenotype very similar to that
seen in humans (256,257). Importantly, these studies have
highlighted how the balance between excitation and inhibi-
tion is a critical modifier in this disorder (258). Similarly,
genetic knock-in of human mutations in KCNQ2 and
KCNQ3 has many similarities to the human phenotype of
benign familial neonatal convulsions (259). Enhanced func-
tion of T-type calcium channels in thalamocortical circuits
has been postulated to mediate childhood absence epilepsy.
While specific mutations in T-type calcium channels have not
been determined in the human condition; specific genetic tar-
geting of enhanced expression of T-type calcium channels in
this circuit have been found to mimic the human condition
(260). However, genetic knock-in of human mutations in
GABA receptors associated with generalized epilepsy syn-
dromes has not resulted in phenotypes similar to the human
conditions (261,262). Similarly, knock-in of human muta-
tions in nicotinic acetylcholine receptors seen in autosomal-
dominant nocturnal frontal lobe epilepsy also does not repro-
duce features similar to the human syndromes (263). These
negative results suggest not only the complexities of genetic
technologies, but also likely reflect basic underlying differ-
ences in rodent and human physiology, especially susceptibil-
ity to seizures and epilepsy.

SUMMARY

Animal models, despite their limitations, have advanced our
understanding of the mechanisms of seizures and epileptoge-
nesis. Specifically, substantial gains have been made in
understanding the ability of the hippocampus and cortex to
rewire themselves following insults to result in circuits capa-
ble of spontaneous seizures. Developmental models have
shown how significant physiological and behavioral alter-
ations can result without obvious histological changes.
Important questions remain to be answered in further under-
standing the signaling pathways, genetic programs, and
subsequent synaptic modifications that underlie epileptogen-
sis as well as the behavioral consequences of seizures. These
discoveries are crucial to determine safe and effective phar-
macological targets for stopping seizures and curing epilepsy
and its consequences.
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