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VIEW AND REVIEW

Recent developments in the genetics of 
childhood epileptic encephalopathies: impact 
in clinical practice
Desenvolvimentos recentes na genética das encefalopatias epilépticas da infância: 
impacto na prática clínica
Marina C. Gonsales1, Maria Augusta Montenegro2, Camila V. Soler1, Ana Carolina Coan,2, Marilisa M. 
Guerreiro2, Iscia Lopes-Cendes1

The encephalopathic effects of epileptic activity may oc-
cur in association with any form of epilepsy; however, it is 
more often present in a number of syndromes called child-
hood epileptic encephalopathies (CEEs). CEEs are conditions 
in which “the epileptic activity itself may contribute to severe 
cognitive and behavioral impairment above and beyond what 
might be expected from the underlying pathology alone (e.g., 
cortical malformation), and these can worsen over time”1. 

Although the damaging effect of seizures can potentially hap-
pen in any form of epilepsy, in some syndromes this impair-
ment is virtually always present. According to current classi-
fication1, the following syndromes are considered CEEs: early 
myoclonic encephalopathy (EME), Ohtahara syndrome (OS), 
epilepsy of infancy with migrating focal seizures (EIMFS), 
West syndrome (WS), Dravet syndrome, Doose syndrome or 
epilepsy with myoclonic atonic (previously astatic) seizures, 
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AbStrACt
Recent advances in molecular genetics led to the discovery of several genes for childhood epileptic encephalopathies (CEEs). As the 
knowledge about the genes associated with this group of disorders develops, it becomes evident that CEEs present a number of specific 
genetic characteristics, which will influence the use of molecular testing for clinical purposes. Among these, there are the presence of 
marked genetic heterogeneity and the high frequency of de novo mutations. Therefore, the main objectives of this review paper are to present 
and discuss current knowledge regarding i) new genetic findings in CEEs, ii) phenotype-genotype correlations in different forms of CEEs; 
and, most importantly, iii) the impact of these new findings in clinical practice. Accompanying this text we have included a comprehensive 
table, containing the list of genes currently known to be involved in the etiology of CEEs.

Keywords: Dravet syndrome, Ohtahara syndrome, West syndrome, Lennox-Gastaut syndrome, Doose syndrome, Landau-Kleffner syndrome.

reSumo
Os avanços recentes em genética molecular permitiram a descoberta de vários genes para encefalopatias epilépticas da infância (EEIs). À 
medida que o conhecimento sobre os genes associados a este grupo de doenças se desenvolve, torna-se evidente que as EEIs apresentam 
uma série de características genéticas específicas, o que influencia o uso do teste molecular para fins clínicos. Entre as EEIs, há a 
presença de acentuada heterogeneidade genética e alta frequência de mutações de novo. Assim, os principais objetivos deste trabalho de 
revisão são apresentar e discutir o conhecimento atual a respeito de i) novas descobertas em genética molecular das EEIs, ii) correlações 
fenótipo-genótipo nas diferentes formas de EEIs; e, mais importante, iii) o impacto desses novos achados genéticos na prática clínica. 
Acompanhando o texto, incluímos uma tabela contendo a lista de genes conhecidos atualmente como envolvidos na etiologia da EEIs.

Palavras-chave: síndrome de Dravet, síndrome de Ohtahara, síndrome de West, síndrome de Lennox-Gastaut, síndrome de Doose, 
síndrome de Landau-Kleffner.
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Lennox-Gastaut syndrome (LGS), epileptic encephalopathy 
with continuous spike-and-wave during sleep (CSWS), and 
Landau-Kleffner syndrome (LKS). As widely recognized, 
each one of these different clinical entities have specific char-
acteristics, including mainly clinical and EEG features, which 
make it possible to clinically recognize them; however, recent 
developments in the field of molecular genetics are helping 
to determine that there are many intermediary phenotypes, 
which can represent a great diagnostic challenge to clini-
cians. Patients presenting these transitional or less charac-
teristic phenotypes are probably those who will benefit most 
of the recently available genetic diagnostic tools, which will 
help determining diagnosis and establishing an etiology. 
However, even for patients with a clinically well-defined syn-
drome within the group of CEEs a positive genetic test can 
define etiology. Therefore, the main objective of this review 
is to present and discuss current knowledge regarding i) new 
molecular genetic findings in this group of disorders; ii) the 
complex phenotype-genotype correlations observed in the 
CEEs; and, most importantly, iii) the impact of these new ge-
netic findings in clinical practice.

MOST COMMON CEES

Early myoclonic encephalopathy (EME) is a neonatal epi-
lepsy syndrome characterized by onset of myoclonic seizures 
usually within the first month of life and abnormal neurologi-
cal signs at birth or at the moment of seizure onset2. The EEG 
presents with suppression-burst pattern with short paroxys-
mal bursts and longer periods of suppression, enhanced dur-
ing sleep2. The syndrome has a poor prognosis with progres-
sive deterioration and early death.

Ohtahara syndrome (OS), also called early infantile epilep-
tic encephalopathy, is an age-dependent epileptic encephalop-
athy characterized by tonic seizures with onset at the neonatal 
period and EEG showing suppression-burst pattern with lon-
ger periods of bursts and shorter periods of suppression2. The 
prognosis is poor, with significant neurological impairment or 
death. Children with OS might evolve to West syndrome2.

Epilepsy of infancy with migrating focal seizures (EIMFS) 
is a rare epileptic syndrome characterized by onset of multifo-
cal focal seizures within the first 6 months of life and an ictal 
EEG demonstrating seizures independently arising and mov-
ing sequentially from both hemispheres. The syndrome pro-
gresses as intractable seizures and further psychomotor delay3.

West syndrome (WS) is characterized by developmental 
delay, epileptic spasms and EEG showing hypsarrhythmia. It 
starts in the first year of life, usually after the third month. 
The spasms are usually refractory to anti-epileptic drugs, 
ACTH or steroids; therefore, the prognosis is often poor1.

Lennox-Gastaut syndrome (LGS) starts between 3 and 
5 years-old. It is characterized by deterioration of cognitive 
and psychomotor skills, multiple seizure types (tonic, atonic, 

atypical absences, generalized tonic clonic and focal), and EEG 
during wakefulness showing diffuse slow spike-and-waves 
(<2.5Hz). During sleep, EEG shows bursts of generalized fast 
spikes around 10 Hz4. Although LGS can evolve from WS, it 
may occur in a previously epilepsy free child. Both WS and 
LGS can be associated with structural lesions such as mal-
formations of cortical development, vascular lesions, meta-
bolic disorders, etc. However, several patients present with a 
normal MRI. Therefore, determining the etiology of CEEs in 
these patients represents an additional challenge.

Doose syndrome, or epilepsy with myoclonic atonic (pre-
viously astatic) seizures, is characterized by multiple sei-
zure types such as atypical absence, atonic, tonic and myo-
clonic astatic seizures. Its onset is between 7 months and 
6 years-old5, and the prognosis is variable. Disturbances in 
cognitive and psychomotor skills are often present. The EEG 
remains the best diagnostic tool available.

Dravet syndrome was described in 1978 under the name 
of severe myoclonic epilepsy of infancy6. It is characterized 
by febrile and afebrile generalized and unilateral, clonic or 
tonic clonic, seizures, which occur in the first year of life 
in an otherwise normal infant. These can be later associat-
ed with myoclonus, atypical absences, and partial seizures, 
and high sensitivity even to low-degree fever is observed6,7. 
Between the first and fourth years of life, some degree of cog-
nitive impairment and behavior abnormality is often present. 
Seizures are usually refractory to antiepileptic drug treat-
ment. Photosensitivity may be present. However, photosensi-
tivity can be difficult to evaluate because it may not be pres-
ent during the whole course of the disease6.

Epileptic encephalopathy with continuous spike-and-wave 
during sleep (CSWS) is characterized by a typical EEG find-
ing of continuous spike-and-wave discharges (usually dif-
fuse, but sometimes focal) occurring in at least 85% of slow 
sleep in children with focal or, eventually, generalized sei-
zures (electrical status epilepticus of sleep, ESES). Seizure 
onset usually occurs between 2 and 12 years and there is a 
marked neurological deterioration in cognitive, behavioral 
and/or motor domains8. The treatment must aim the disap-
pearance of the ESES, which is the mechanism responsible 
for the encephalopathy.

Landau-Kleffner syndrome (LKS) or syndrome of acquired 
aphasia with convulsive disorder in children is an epileptic en-
cephalopathy that occurs in previously normal children with 
normally developed age-appropriated language9. It is charac-
terized by seizures and acquired aphasia, typically verbal au-
ditory agnosia, with onset between 2 and 8 years. EEG during 
sleep of patients with LKS characteristically shows ESES.

THE DIAGNOSIS OF CEE

The diagnosis of CEEs is still based on clinical fea-
tures and EEG findings as described above. However, until 
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recently, the etiology in most patients was not established. 
The first important development to improve the determina-
tion of etiology in patients with CEE occurred in the years 
of 1980’s with the advances in imaging techniques, especially 
the introduction of clinical MRI. These developments made 
it possible to perform in vivo diagnosis of malformations of 
cortical development. However, it also became clear that 
a significant proportion of patients with CEE do not have 
structural lesions1,7,10. It was only in the 21st century that sig-
nificant advances in molecular genetics enabled the discov-
ery that many patients with CEE actually have mutations in 
specific genes11.

RECENT DEVELOPMENTS IN THE GENETICS OF CEE

Recent advances in molecular genetic technologies have 
allowed for the mapping and the discovery of several genes 
for different forms of epilepsies. Traditional approaches such 
as linkage analysis and candidate gene association studies 
enable to determine the chromosome position of genes po-
tentially contributing to the disease by evaluating the segre-
gation of genetic markers among affected individuals within 
large pedigrees or by comparing their allele frequencies be-
tween cohorts of affected and unaffected individuals. Over 
the last decade, new techniques for detecting variants as-
sociated with complex traits have emerged, such as genome 
wide association studies (GWAS), which interrogates a great 
number of single-nucleotide polymorphisms (SNPs) among a 
large group of individuals. DNA sequencing methods to de-
tect potentially deleterious variants have also advanced from 

the capillary electrophoresis technology (Sanger sequenc-
ing) to the next generation high throughput techniques, al-
lowing for massively parallel sequencing that may include 
either the entire genomic sequence (whole genome sequenc-
ing, WGS) or be restricted to the protein coding sequences 
(whole exome sequencing, WES). Structural variations, such 
as deletions or duplications named copy number variants 
(CNVs) are also currently widely investigated by chromo-
some-microarryas using SNP-array technologies or arrays for 
complete genome hybridization (array-CGH).

This plethora of molecular genetics tools has helped to 
unravel the genetic factors underlying epilepsies such as 
the CEEs. As the knowledge on the genes associated with 
this group of disorders develops, it becomes evident that 
genetic heterogeneity is present in CEE, with many genes 
identified as harboring causative mutations in different pa-
tients. In addition, a surprising complex relationship be-
tween gene/mutations and phenotypes has also emerged. 
Therefore, we highlight the need to further assess the impact 
of these new molecular genetic findings in clinical practice. 
Below, we outline the main potentially deleterious variants 
currently reported for the different CEE phenotypes. The 
reader will clearly notice that a single phenotype (as defined 
by clinical and EEG aspects) is frequently associated with dif-
ferent causative mutations in different patients, as well as 
that, in several instances, mutations in the same gene may 
cause different CEE syndromes, exemplifying well the com-
plex nature of the genotype/phenotype relationship, which 
are still in need of further studies. A comprehensive table of 
the genes associated with the different CEE phenotypes is 
presented (Table).

Table. List of genes associated with different childhood epileptic encephalopathies (CEEs).

Gene Associated phenotype references
ADORA2A Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD)  61
ALG13 Lennox-Gastaut Syndrome and/or Infantile Spasms 62
ARFGEF2 West Syndrome 63
ARHGEF15 Severe Early-onset Epilepsy 64
ARHGEF9 Severe mental retardation and epilepsy 65
ARX Lennox-Gastaut syndrome

Ohtahara Syndrome
West Syndrome 

16; 29; 30

ASAH1 Childhood-onset Epilepsy or Early-onset encephalopathy 66
C10orf2 Early Onset Encephalopathy

Infantile onset Spinocerebellar Ataxia Syndrome
67; 68

CACNA1A Lennox-Gastaut Syndrome and/or Infantile Spasms 62
CACNA2D2 Early infantile epileptic encephalopathies 69; 70
CASK Ohtahara Syndrome 17
CDKL5/
STK9

Early onset encephalopathy
Infantile Spasms and Mental Retardation
Lennox-Gastaut syndrome
West Syndrome

31; 71;72; 73

CHD2 Dravet Syndrome
Infantile Spasms
Lennox-Gastaut syndrome

45; 62; 74; 75

Continue
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Continuation
CHRNA7 Congenital retinal dysfunction, Refractory epilepsy, Encephalopathy, Mental retardation, Repetitive 

hand movements, Severe muscular hypotonia and Macrocytosis.
Severe encephalopathy with seizures and hypotonia

76; 77; 78

CLCN4 Severe Early-onset Epilepsy 64
CNTNAP2 Focal Epilepsy with Regression 79
DCX Lennox-Gastaut Syndrome and/or Infantile Spasms 62
DOCK7 Epileptic Encephalopathy and Cortical Blindness 80
EEF1A2 Severe Early-onset Epilepsy 64
ENG Early Infantile Epileptic Encephalopathy with suppression-burst 81
ErbB4 Early Mioclonic Encephalopathy 13
FLNA Lennox-Gastaut Syndrome and/or Infantile Spasms 62
FOLR1 Childhood-onset Epilepsy or Early-onset encephalopathy 66
FOXG1 Rett syndrome with early-onset seizures 82; 83
GABRA1 Lennox-Gastaut Syndrome and/or Infantile Spasms 62
GABRB3 Lennox-Gastaut Syndrome and/or Infantile Spasms 62
GABRG2 Doose syndrome

Dravet Syndrome
Generalized epilepsy with febrile seizures plus (GEFS+)

45; 50; 84

GNAO1 Epileptic Encephalopathy with involuntary movements 85
GRIN1 Lennox-Gastaut Syndrome and/or Infantile Spasms 62
GRIN2A Epileptic encephalopathy with continuous spike-and-wave during sleep

Atypical rolandic epilepsy and speech impairment
Landau-Kleffner syndrome

56;58; 86; 87;88

GRIN2B Lennox-Gastaut Syndrome and/or Infantile Spasms
Mental retardation and/or epilepsy

88; 62

HCN1 Early Infantile Epileptic Encephalopathy 89
HDAC4 Lennox-Gastaut Syndrome and/or Infantile Spasms 62
HNRNPU Lennox-Gastaut Syndrome and/or Infantile Spasms 62; 90
HOXD Early Infantile Epileptic Encephalopathy without Mesomelic Dysplasia 91
IQSEC2 Lennox-Gastaut Syndrome and/or Infantile Spasms 62
JNK3 Severe Developmental Epileptic Encephalopathy (Lennox-Gastaut syndrome) 42
KCNH5 Severe Early-onset Epilepsy 64
KCNQ2 Early onset epileptic encephalopathy (EOEE)

Ohtahara Syndrome
18; 92; 93; 94

KCNQ3 Benign Familial Neonatal Seizures (BFNS)
Early onset epileptic encephalopathy (EOEE)

65; 95; 96

KCNT1 Malignant migrating partial seizures of infancy (MMPSI)
Ohtahara Syndrome

18; 22;97 

KCTD7 Progressive Myoclonus Epilepsy 65; 98 
KLF13 Congenital retinal dysfunction, Refractory epilepsy, Encephalopathy, Mental retardation, Repetitive 

hand movements, Severe muscular hypotonia and Macrocytosis.
78

MAGI2 Early-onset Epileptic Encephalopathy
Infantile spasms

99; 100; 101

MBD5 West Syndrome 90
MECP2 Early-onset Encephalopathy and Cortical Myoclonus

Lennox-Gastaut syndrome and Rett syndrome 
41; 102

MEF2C Severe Intellectual Disability and Early-onset Epileptic Encephalopathy 103
MTOR Lennox-Gastaut Syndrome and/or Infantile Spasms 62
NECAP1 Severe infantile epileptic encephalopathy 104
NEDD4L Lennox-Gastaut Syndrome and/or Infantile Spasms 62
NRG2 Hypotonia, Feeding difficulty in infancy, Severe developmental delay, and Epileptic/

nonepileptic Encephalopathy associated with Delayed Myelination
105

PCDH19 Dravet Syndrome
Infantile or early childhood onset epilepsy in female patients
Lennox-Gastaut syndrome

45; 53; 106

PCDHG Hypotonia, Feeding difficulty in infancy, Severe developmental delay, and Epileptic/
nonepileptic Encephalopathy associated with Delayed Myelination

105

PIGA Early-onset Epileptic Encephalopathy 15
PIGQ Ohtahara Syndrome 18
PLCB1 Early-onset epileptic encephalopathy

Malignant migrating partial seizures in infancy 
26; 62; 101

Continue
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Continuation
PNKP Early-onset Epileptic Encephalopathy

Intractable Seizures and Developmental delay
West Syndrome

100; 101; 107

PNPO Neonatal epileptic encephalopathy 108

POLG1 Alpers syndrome
Childhood progressive encephalopathy
Severe Encephalopathy with Intractable Epilepsy

109; 110

PRRT2 Benign familial Infantile Epilepsy (BFIE)
Infantile convulsions with choreoathetosis (ICCA)
Paroxysmal kinesigenic dyskinesia (PKD)

111; 112

RB1 Infantile Spasms and Retinoblastoma 113

SCN1A Acute Encephalopathy
Doose Syndrome
Dravet Syndrome
Early Onset Epilepsy (EOE)
Generalized Epilepsy With Febrile Seizures Plus (GEFS+)
Lennox-Gastaut syndrome
Malformations of Cortical Development (MCDs)
Malignant Migrating Partial Seizures of Infancy
West Syndrome

11; 20; 43; 47; 64; 
114; 115; 116; 

117;118; 119; 120

SCN1B Dravet Syndrome
Generalized epilepsy with febrile seizures plus (GEFS+)

44; 52; 121

SCN2A Dravet Syndrome
Generalized epilepsy with febrile seizures plus (GEFS+)
Intractable epilepsy
Lennox-Gastaut syndrome
Migrating focal seizures of infancy
Ohtahara Syndrome
West Syndrome

18; 19; 51; 65; 60; 
122; 123

SCN8A Epilepsy of infancy with migrating focal seizures
Infantile epileptic encephalopathy and SUDEP
Lennox-Gastaut syndrome

21;62; 124 

SERPINI1 Continuous Spike and Waves during slow-wave Sleep 55

SLC19A3 Epileptic spasms in early infancy
Severe psychomotor retardation

125

SLC25A22 Early myoclonic encephalopathy
Epilepsy of infancy with migrating focal seizures
Neonatal Epileptic Encephalopathy with Suppression Burst

12; 24; 126

SLC2A1 Doose Syndrome
GLUT1 deficiency with neurodevelopmental delay and severe ataxia

46; 127

SLC35A2 Early-onset Epileptic Encephalopathy 128

SLC9A6 Continuous Spike and Waves during slow-wave Sleep and Christianson syndrome 57

SNAP25 Severe Static Encephalopathy, Intellectual disability, and Generalized Epilepsy 129

SPTAN1 West Syndrome 39; 130

SRGAP2 Early infantile epileptic encephalopathy 131

SRPX2 Rolandic epilepsy associated with oral and speech dyspraxia and mental retardation 132

STXBP1 Borderline Early myoclonic encephalopathy and Ohtahara Syndrome
Early infantile epileptic encephalopathy
Lennox-Gastaut syndrome
Ohtahara Syndrome
West Syndrome

14; 38; 62; 101; 
133; 134

SYNGAP1 Early-onset epileptic Encephalopathy 45; 66

SYNJ1 Childhood-onset Epilepsy or Early-onset encephalopathy 66

SZT2 Early-onset Epileptic Encephalopathy characterized by Refractory Epilepsy and Absent 
Developmental Milestones

135

TBC1D24 Familial Infantile Myoclonic Epilepsy
Focal epilepsy and Intellectual disability syndrome
Malignant Migrating Partial Seizures of Infancy (MMPSI)
Ohtahara Syndrome

23; 136

TCF4 Pitt-Hopkins syndrome (PHS) 137

TNK2 Infantile onset Epilepsy and Intellectual Disability 138

TOR1A Early Infantile Epileptic Encephalopathy 81

TRPM1 Congenital retinal dysfunction, Refractory epilepsy, Encephalopathy, Mental retardation, Repetitive 
hand movements, Severe muscular hypotonia and Macrocytosis.

78
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Early myoclonic encephalopathy (EME)
Up until the last decade, little about the etiology of EME 

was known, and a scarcity of familial cases had been report-
ed. Linkage analysis of a family with severe neonatal epilep-
sies with suppression-burst pattern revealed genetic map-
ping to chromosome 11p15.5, followed by the identification 
of a missense mutation in the gene encoding a mitochondrial 
glutamate/H symporter, SLC25A22, cosegregating with the 
disease12. The authors then performed SLC25A22 mutation 
screening in 25 additional EME patients, but found no muta-
tion. Furthermore, a de novo translocation t(2;6)(q34;p25.3) 
has been reported in a patient with EME and profound psy-
chomotor delay13. Fluorescence in situ hybridization (FISH) 
analysis revealed that one breakpoint disrupts the erythro-
blastic leukemia viral oncogene homolog 4 gene ErbB4, in-
volved in the regulation of cell growth, proliferation and 
differentiation and that have been associated with schizo-
phrenia13. More recently, mutations in two other candidate 
genes for EME have been reported. Targeted capture and se-
quencing of candidate genes for early onset epileptic enceph-
alopathy (EOEE) detected a de novo splice site mutation in 
the syntaxin binding protein 1 gene (STXBP1), involved in the 
neurotransmitters release regulation, in a borderline patient 
with EME/OS14. This gene is also involved in the etiology of 
other CEE, as it will be further presented in this paper. The 
other candidate gene is PIGA, encoding an enzyme required 
for the biosynthesis of a phosphatidylinositol glycan anchor, 
in which a nonsense mutation with an uncertain mode of in-
heritance was identified by WES in a sporadic case of EME 
previously diagnosed as OS15.

Ohtahara syndrome (OS)
Although OS may arise from a variety of etiologies, main-

ly involving structural abnormalities, a number of different 
genes have recently been associated with this syndrome. The 
first report of a genetic basis for OS was a de novo 33-bp du-
plication identified by direct sequencing16. This deletion com-
prises the aristaless-related homeobox gene ARX, essential 
for the development of interneurons, and results in an expan-
sion of the first polyalanine tract of the ARX protein. ARX mu-
tations had already been implicated in a range of phenotypes 
including brain malformations with abnormal genitalia and 
nonsyndromic mental retardation, thus the identification of 
an ARX mutation in OS suggests a continuum between these 
phenotypes, with a common pathological mechanism possi-
bly caused by impairment in the γ-aminobutyric acid (GABA)
ergic interneurons16. Further studies contributed to increase 
the knowledge on the association of ARX with OS, with the 
report of additional mutations identified by direct sequenc-
ing. However, a percentage of OS cases still do not pres-
ent ARX mutations17. Copy number variations (CNVs) have 
also been implicated in the etiology of OS, such as a de novo 
2Mb deletion at 9q33.3–q34.11 identified by aCGH and a 
111-kb deletion at Xp11.4 detected by genomic microarray 

analysis17. Mutation analysis of the STXBP1 gene, included in 
the 9q33.3–q34.11 region, revealed de novo missense, frame-
shift and splice-site mutations14. The 111-kb deletion com-
prises the calcium/calmodulin-dependent serine protein 
kinase gene CASK17. Interestingly, a de novo translation ini-
tiation mutation in the same CASK gene was detected in a 
second patient with OS17. Recently, genes encoding ion chan-
nels have also been associated with OS. One of them is the 
gene encoding the voltage-gated potassium channel Kv7.2 
(KCNQ2), in which de novo missense mutations were found 
in patients with OS and neonatal epileptic encephalopathies 
resembling OS18. Another ion channel associated with OS is 
the voltage-gated sodium channel Nav1.2 (SCN2A), in which 
de novo missense mutations were also identified18. Mutations 
in both KCNQ2 and SCN2A are involved in a wide clinical 
spectrum of EOEEs, which overlap each other including be-
nign phenotypes such as benign familial neonatal seizures, 
but also severe forms of CEEs. Recently, a WGS study also 
revealed two novel genes for OS: KCNT1, which encodes the 
potassium channel KCa4.1, and PIGQ, encoding a subunit of 
an N-acetylglucosaminyltransferase involved in the glyco-
sylphosphatidyl inositol (GPI) biosynthesis18.

Epilepsy of infancy with migrating focal seizures 
(EIMFS)

The first genetic study in malignant EIMFS investigating 
genes encoding different ion channels yielded no deleteri-
ous mutations. Later, however, mutation screening of volt-
age-gated sodium channel subunit genes revealed de novo 
missense mutations in SCN2A (Nav1.2)19, SCN1A (Nav1.1)20 
and SCN8A (Nav1.6)21. In addition, WES analysis allowed for 
the detection of de novo missense mutations in another ion 
channel gene, KCNT1 (KCa4.1)22. WES analysis also enabled 
the identification of novel candidate genes for EIMFS, such as 
the TBC1D24 gene23 and SLC25A2224. Furthermore, CNVs ap-
pear to account for a few cases of EIMFS. Distinct studies re-
vealed a 598 Kb microduplication at chromosome 16p11.225, 
an 11.06 Mb deletion of chromosome 2q24.2q31.1, compris-
ing more than 40 genes including SCN1A20 and a deletion of 
chromosome 20p13, disrupting the phospholipase C, beta 
1 gene PLCB126. Even with these recent advances regarding 
the genetic basis of EIMFS, the etiology of a number cases re-
main unclear, as other studies investigating candidates genes 
failed to identify potential disease-causing mutations22.

West syndrome (WS)
The first evidence about the genetic basis of WS came from 

genetic linkage analysis, with the mapping of an X-linked form 
of WS to chromosome Xp11.4 and Xp21.3-Xp2227,28. Mutation 
screening of the ARX gene located within the candidate re-
gion in families with X-linked WS revealed a 24-bp duplica-
tion; an expansion of seven tandem triplets repeats, both re-
sulting in an additional polyalanine stretch; and a 1.517 bp 
deletion promoting a frameshift29. Frameshift and missense 
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mutations were subsequently found in the same ARX gene 
in patients diagnosed with WS or those who evolved to WS 
from an OS phenotype30.

A second chromosomal locus for X-linked WS was identi-
fied distal to ARX in the Xp22.3 region, with the subsequent 
report of two apparently balanced X;autosome transloca-
tions detected by FISH and Southern blot hybridization31. In 
both cases, the breakpoint mapped to the cyclin-dependent 
kinase-like 5 gene, CDKL5 (also known as serine/threonine 
kinase 9, STK9). However, screening for potentially deleteri-
ous CDKL5 mutations in additional WS cohorts yielded neg-
ative results. Other chromosomal anomalies associated with 
WS include partial 4p trisomy32, balanced translocations 
t(X;18)(p22;p11.2)33 and t(2;6)(p15;p22.3)34, microdeletions on 
chromosomes 9q34.11 and 15q13.335, duplications on chro-
mosome 1436 and a 0.5 Mb triplication (partial tetrasomy) 
of chromosome 17q25.337. Additionally, mutation screening 
of STXBP1and the α-II spectrin gene SPTAN1, both located 
within the microdeleted region on chromosome 9q34.11, 
revealed a de novo STXBP1 missense mutation38 and an in-
frame 3 bp de novo deletion, a 6 bp and a 9 bp de novo dupli-
cations in SPTAN139 in patients with WS. However, further 
STXBP1and SPTAN1 mutation screening in other cohorts re-
vealed no mutations39. Other studies, usually single case-re-
ports, found mutations in several other genes. A few cases of 
mitochondrial DNA mutation have also been reported. This 
genetic heterogeneity seen could be explained by the multi-
ple mechanisms/lesions which can ultimately lead to the WS 
phenotype, including malformations of cortical development 
and a primarily mitochondrial disorder.

Lennox-Gastaut syndrome (LGS)
The etiology of LGS is highly heterogeneous, with the ma-

jority of cases resulting from a brain structural abnormality, 
but also including genetic factors. Mutations in a variety of 
genes that might be associated with LGS or LGS-like pheno-
types have been reported, although there is still scarcity of 
a systematic genetic analyses of cohorts with LGS. Among 
these genes, some have been already associated with other 
types of CEEs, such as SCN1A, SCN2A, CHD2, CDKL5, ARX 
and STXBP1. However, other studies failed to detect caus-
ative mutations in patients with LGS in these candidate 
genes. Most of the mutations identified to date were detected 
using WES or targeted massively parallel sequencing, which 
also allowed for the identification of de novo mutations in 
several other genes.

Several pathological CNVs have also been identified in 
patients with LGS: a microduplication of 15q11–q13 was 
reported in patients with late-onset LGS40. Furthermore, a 
22q13.3 deletion, a 2q23.1 deletion, a duplication encompass-
ing the MECP2 gene, and a deletion including the chromo-
domain helicase DNA binding protein 2gene (CHD2), were 
also detected by aCGH in patients with LGS41. Another chro-
mosome abnormality identified in a patient with a severe 

developmental delay and CEE consistent with LGS was a bal-
anced translocation t(Y;4)(q11.2;q21), which truncates the 
c-Jun N-terminal kinase 3 ( JNK3) gene42.

Doose syndrome
Since the description of Doose syndrome, hereditary fac-

tors have been suspected of been involved, most likely pre-
senting a polygenic inheritance. The hypothesis of a genetic 
etiology for this phenotype was later supported by studies 
showing affected members in families with generalized fe-
brile seizures plus (GEFS+) harboring mutations in SCN1A43, 
SCN1B44 and GABRG2. However, only one member of each 
family investigated had Doose syndrome, and these individu-
als all had some atypical features. Moreover, subsequent stud-
ies of these candidate genes in sporadic and familial cases of 
Doose syndrome yielded no causative mutations. Additional 
studies investigating several other candidate genes also did 
not find causative mutations in patients with typical Doose 
syndrome.

To date, the majority of mutations associated with Doose 
syndrome were identified by target sequencing of SCN1A. In 
addition, two patients with Doose syndrome from the same 
large pedigree and a patient from another cohort showed 
missense mutations in GABRG245. This same study per-
formed targeted massively parallel sequencing, which also 
enabled the identification of two de novo frameshift muta-
tions in the CHD2 gene in two other patients with Doose syn-
drome45. More recently, another gene has risen as a potential 
candidate for Doose syndrome, the SLC2A1, which encodes 
the glucose transporter 1 (GLUT1), associated with a severe 
metabolic encephalopathy involving movement disorder and 
epilepsy46. However, multiplex ligation-dependent probe am-
plification analysis (MLPA) did not reveal any structural rear-
rangements in SLC2A1. The importance of seeking mutations 
in SLC2A1 (GLUT1) is that these patients appear to respond 
to ketogenic diet which should be introduced when molecu-
lar diagnosis is confirmed7,46.

Dravet syndrome
Initially, linkage studies allowed for the identification of 

a locus for GEFS+ on chromosome 2, with subsequent de-
tection of mutations in SCN1A43. Clinical similarities between 
some patients with GEFS+ and Dravet syndrome motivated 
Claes et al.47 to further investigate mutations in SCN1A in 
patients with Dravet syndrome; thus, leading to the discov-
ery of the first mutations in patients with Dravet syndrome. 
After this first report, several mutations in SCN1A have been 
identified, with an overall frequency of mutations of approxi-
mately 70-80% in patients with Dravet syndrome. Therefore, 
SCN1A can be considered today as one of the most clinically 
relevant genes for genetic epilepsy48. Interestingly, mutations 
in SCN1A in patients with Dravet syndrome frequently arise 
de novo; while in GEFS+ they are usually inherited as an auto-
somal dominant trait48. In addition, structural changes, CNVs, 
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in SCN1A have been identified in a percentage of patients 
with Dravet syndrome, making it important to use more than 
one molecular technique to completely study potential del-
eterious changes in SCN1A in patients with this phenotype49.

Several studies have been performed to identify novel 
candidate genes for Dravet syndrome in SCN1A-negative pa-
tients. GABRG2 nonsense mutations have been identified, one 
in a family with GEFS+ and the other in dizygotic twins with 
Dravet syndrome50. However, another study failed to identi-
fy mutations in GABRG2 in a group of patients with Dravet 
syndrome. In addition, nonsense and missense mutations in 
SCN2A were found in other cohorts51. Homozygous missense 
mutations in SCN1B have also been identified52. Depienne et 
al.53 investigated micro-rearrangements by high-density SNP 
microarrays, which led to the discovery of a hemizygous de-
letion encompassing the protocadherin 19 gene (PCDH19). 
Subsequent PCDH19 target sequencing of additional sub-
jects led to the identification of nonsense, frameshift and 
missense mutations. Recent WES and target sequencing 
studies analyzing cohorts of patients with CEE presenting 
some features of Dravet syndrome also revealed mutations 
in additional candidate genes. In addition, although Dravet 
syndrome is fundamentally considered a monogenic disease, 
the hypothesis of a complex heritance in some patients has 
recently emerged, with the identification of a few modulating 
genes that might be involved in the etiology of Dravet syn-
drome. Therefore, it is clear that even in a somewhat clinical-
ly well-defined phenotype such as Dravet syndrome the pres-
ence of marked genetic heterogeneity occurs.

Epileptic encephalopathy with continuous 
spike-and-wave during sleep (CSWS)

To date, little is known about the genetic basis of CSWS, 
with only one concordant pair of monozygotic twins report-
ed54 and few mutations identified. Later, though, a missense 
mutation in the neuroserpin gene SERPINI1 (also known as 
proteinase inhibitor 12 gene, PI12) was found in one patient 
who presented EEG activity suggestive of CSWS55.

It is currently recognized that there is a continuous spec-
trum comprising rolandic epilepsy, CSWS and LKS, suggest-
ing that these phenotypes may share a common genetic eti-
ology. This assumption is supported by the recent finding of 
different types of de novo or inherited mutations in GRIN2A 
in patients with CSWS belonging to families segregating ep-
ilepsy-aphasia syndrome disorders. In these families there 
were patients with variable phenotypes such as LKS, CSWSS, 
and atypical rolandic epilepsy and speech impairment56. 
GRIN2A encodes a subunit of the N-methyl-d-aspartate re-
ceptor, involved in the mediation of excitatory neurotrans-
mission. More recently, an inherited homozygous splice-site 
mutation was identified in SLC9A6 in a patient with clini-
cal features of Christianson syndrome and CSWS57. SLC9A6 
encodes a sodium-hydrogen exchanger protein and had al-
ready been implicated in Christianson syndrome. In addition, 

CNVs localized in genes that may be involved in predispo-
sition to electrical status epilepticus during sleep have also 
been detected in patients with CSWS59.

Landau-Kleffner syndrome (LKS)
Up until recently, scarce information regarding the ge-

netic factors involved in the etiology of LKS was available, 
with only few cases reported9. Lately, investigation of CNVs 
in LKS patients using array-CGH led to the identification of a 
15q13.3 microdeletion59 and rare CNVs such as a microdele-
tion on chromosome 16p13, comprising the GRIN2A gene58. 
Subsequent GRIN2A mutation screening by target sequenc-
ing and WES revealed mutations in familial and isolated pa-
tients with LKS56. The identification of several de novo and 
inherited mutations in GRIN2A in both LKS and CSWSS sup-
ports the hypothesis of a clinical spectrum with a similar ge-
netic bases for both disorders56.

IMPACT OF THE NEW GENETIC FINDINGS IN 
CLINICAL PRACTICE

As described above, the recent genetic findings in the 
group of CEEs are starting to shed some light on the differ-
ent molecular mechanisms underlying several types of CEEs. 
It also becomes clear that genetic heterogeneity is a rule with 
different genes causing the same phenotype, as well as clin-
ical heterogeneity with several genes causing different sub-
types of CEE. The presence of genetic heterogeneity and clin-
ical variability represent a major challenge when assessing 
the impact of these genetic discoveries in clinical practice. 
In addition, the vast range of molecular genetic technologies 
currently available can overwhelm the clinician, thus deci-
sion making regarding the most suitable technique for de-
tecting genetic variants for each patient is not an easy task.

Nonetheless, the establishment of a correct molecular di-
agnosis has important practical applications as well as signif-
icant emotion impact for patients and parents. The fact that 
most abnormalities present in patients with CEE are de novo 
mutations has important implications for genetic counsel-
ing, since parents will most likely be found not to have these 
mutations and, therefore, the risk of recurrence in the same 
sibship will be the same as in the general population (except 
in rare cases of somatic mosaicism present in one of the par-
ent’s germ line)48. Furthermore, one cannot minimize the 
positive emotional impact of a molecular diagnosis for the 
parents of children with CEE. In general, once a cause for the 
disease is determined, even when curative therapies cannot 
be adopted, parents stop searching for a diagnosis and can 
concentrate on treatment options and rehabilitation.

In addition, the specific diagnosis can influence treat-
ment decisions such as the need to avoid sodium-blockers 
antiepileptic drugs such as carbamazepine and phenytoin in 
Dravet syndrome and SCN1A mutation-positive patients, or 
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the specific indication of the use of ketogenic diet in patients 
with GLUT1 mutations48.

Although very genetically heterogeneous, there are a few 
genes for which specific mutation screening may still be use-
ful in the context of CEEs. One of these is SCN1A, which har-
bors mutation in almost 80% of patients with Dravet syn-
drome. In addition, a few mutations in SCN1A have also been 
reported in other types of. Therefore, one may consider ge-
netic testing for SCN1A useful in all CEEs, although the most 
important indication of SCN1A genetic testing is still within 
the clinical limits of Dravet syndrome.

Another gene for which mutation screening may be very 
useful for clinical purposes in patients with CEEs is ARX. 
Mutations in this gene are mainly found in OS, but also in 
WS patients that evolved from OS or from families with OS 
affected members  and even in a patient that later evolved 
to LGS30. It has been suggested that ARX testing should be 
performed in children younger than one year old with OS 
and a movement disorder, as well as in children with unex-
plained neurodegeneration, progressive white matter loss, 
and cortical atrophy.

STXBP1 should also be considered for genetic testing in 
OS, as several mutations have been associated with this phe-
notype. For other CEE, however, the clinical utility of STXBP1 
genetic test remains unclear, as mutations have been report-
ed only in a single patient with WS not preceded by OS, and 
in a few patients with LGS and Dravet syndrome.

GRIN2A is another gene that has recently emerged as a 
strong candidate for epilepsy-aphasia spectrum disorders 
that include LKS and CSWS56. Thus, GRIN2A genetic testing 
appears to be particularly relevant for these phenotypes.

KCNQ2 and SCN2A genetic testing should be considered 
for patients with EOEE, although genotype-phenotype cor-
relations are not yet well understood60. However, it has been 
recognized that KCNQ2 screening should be performed for 
refractory neonatal seizures of unknown origin. In addition, 
mutations in PCDH19 should be considered in female pa-
tients with Dravet-like syndrome and some degree of cogni-
tive delay and CDKL5 mutation should be contemplated in 
female patients with early onset severe intractable seizures 
or infantile spasms with or without Rett-like phenotype. 
Many other genes also appear to contribute to the etiology of 
certain specific phenotypes within the group of CEEs, but not 
in a frequency that justify a specific genetic testing.

It is important to consider that with the dissemination 
of genomic strategies of molecular diagnosis it is possible 

to adopt tests that will interrogate all candidates genes list-
ed above at once. These can be performed as part of NGS 
gene panels, which should include the most suitable candi-
date genes for the phenotype studied60. Alternatively, high 
throughput strategies such as WES or even WGS can also 
be applied14,18. These can be useful especially when it is not 
clear which candidate gene is involved or for the discovery 
of new genes that might be responsible for the disease. The 
type of test indicated, target sequencing with gene panels or 
WES/WGS, will depend mainly on whether a specific clinical 
diagnosis has been achieved (e.g. Dravet syndrome) or not. 
Obviously, questions regarding costs are also relevant when 
ordering genetic tests and one should keep in mind that costs 
for WES/WGS are decreasing rapidly, making these alterna-
tive more attractive lately.

In addition, there are important questions regarding the 
most indicated molecular method for the different types 
of genetic defects sought48,49. In this way, it is important to 
point-out that a small percentage of patients with Dravet 
syndrome and mutations in SCN1A have pathological CNVs 
instead of sequence mutations48,49. In addition, pathological 
CNVs have been widely reported in patients with different 
degrees of mental retardation associated or not with other 
clinical findings, including epilepsy. Since sequencing tech-
niques can overlook CNVs, an alternative method such as 
chromosomal microarray should also be considered to com-
plement genetic investigation48,49. Moreover, there are other 
limitations in the use of NGS, such as sequences of genes con-
taining multiple repeats that may interfere with correct map-
ping and reading, thus resulting in low sequence coverage14. 
Therefore, the clinician should always be aware that even 
the most current technology in molecular diagnosis is not a 
guarantee of a flawless technique.

In conclusion, it is important to recognize that the most 
accurate technique for diagnosis may vary according to the 
genetic information already available and the phenotype in-
vestigated. When a potential candidate gene is more likely, 
one should consider targeted sequencing which may still be 
more cost-effective. However, in cases where there is scarce 
genetic information available, WES and WGS may reveal 
novel causative genes. In addition, there are a number of 
technical questions (e.g. whether important candidate genes 
will be well covered) that should be considered when using 
gene panels and WES in order to choose the most suitable 
technology. Furthermore, CNV analysis should also be con-
sidered when investigating patients with CEEs.
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