Clinical predictors of response to adjunctive brivaracetam: Insights from real-world data

To the Editors:

We thank Prof. Adam Strzelczyk et al. for providing interesting and informative data on long-term efficacy, tolerability, and retention of brivaracetam (BRV) in epilepsy treatment up to 5 years of follow-up in a longitudinal multicenter study. Switching from levetiracetam (LEV) to BRV and fewer concomitant antiseizure medications correlated with better short-term response, but no investigated parameters correlated with 12-month outcome.

In a cohort in which 90% of patients had previous LEV exposure, these findings suggest that history of LEV treatment may not preclude BRV introduction. The lack of information about the reasons for LEV discontinuation and the baseline characteristics of patients according to LEV exposure may have hampered the likelihood of identifying additional predictors. In our recent analysis of real-world data about adjunctive BRV treatment in patients with focal seizures, history of LEV withdrawal for tolerability issues was an independent predictor of 12-month seizure freedom. Furthermore, in a real-world time-based analysis, the median time-to-baseline seizure frequency was longer for patients who discontinued LEV due to adverse events in comparison to patients with prior LEV use and withdrawal due to insufficient efficacy, and the Kaplan–Meier estimated probability of not achieving baseline seizure count was higher in LEV-naive patients.

The lower burden of concomitant antiseizure medications was associated with better outcomes after 3 months, but favorable combinations of BRV with other drugs were not explored. Recently, the combination of BRV with sodium channel blockers has been shown to result in better efficacy and tolerability being associated with a higher rate of seizure responders and lower rates of adverse events and treatment withdrawal due to poor tolerability. Additive or synergic efficacy without increased toxicity is usually observed by combining antiseizure medications with different mechanisms of action; additional studies are warranted to confirm the preliminary evidence regarding the advantageous association of BRV with drugs targeting sodium currents.

The identification of predictors of long-term treatment response has an important role in clinical practice, and real-word data may contribute to addressing this topic and providing guidance for clinicians.

KEYWORDS
antiseizure medications, brivaracetam, epilepsy, focal seizures

ACKNOWLEDGMENT
There is no acknowledgments to be declared.

CONFLICT OF INTEREST
S.L. has received speaker’s or consultancy fees from Angelini, Eisai, GW Pharmaceuticals, and UCB Pharma and has served on advisory boards for Angelini, Arvelle Therapeutics, BIAL, and GW Pharmaceuticals. V.C. has received speaker’s or consultancy fees from Eisai and UCB Pharma. A.L.N. has received speaker’s or consultancy fees from Eisai, Mylan, Bial, Sanofi, and UCB Pharma. C.D.B. has received consulting fees or speaker honoraria from UCB Pharma, Eisai, GW Pharmaceuticals, BIAL, and Lusopharma. The remaining authors have no conflicts of interest.

Simona Lattanzi1
Valentina Chiesa2
Edoardo Ferlazzo3
Angela La Neve4
Pietro Pignatta5
Carlo Di Bonaventura6

BRIVAracetam add-on First Italian netwoRk STudy (BRIVAFIRST) Group

1Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Ancona, Italy
2Child Neuropsychiatry Unit, Epilepsy Center, AAST Santi Paolo Carlo, Milan, Italy
3Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy

© 2021 International League Against Epilepsy.
REFERENCES

To the Editor,

Last year Epilepsia published our manuscript entitled “A pragmatic algorithm to select appropriate antiseizure medications in patients with epilepsy.”1 The end result of this algorithm was a freely accessible web-based application (https://epipick.org) to help health care professionals select the most appropriate, patient-tailored antiseizure medication (ASM) in patients with epilepsy (seizure onset at 10 years of age or older). EpiPick considers seizure types and patient-specific variables to provide treatment recommendations, ranking ASMs in order of appropriateness based on the available scientific evidence and expert judgement. The app also provides a summary of prescribing information for each of the ASMs being suggested.1 We regarded the app as a tool that would evolve as experience with its use progressed, new scientific evidence emerged, and new ASMs were developed.

Following the publication of the algorithm, we have further validated the app in three studies. In a large, multicenter, prospective study,2 we validated the first part of the algorithm, which classifies seizure types to facilitate therapeutic decision-making. Agreement between the algorithm and the expert classification was 83.2% [95% confidence interval (CI) 78.6%–87.8%], with an agreement coefficient (AC1) of 0.82 (95% CI 0.77–0.87), indicating almost perfect agreement.2 In another study3 we investigated the agreement among experts in selecting an ASM as initial monotherapy and used their choices to validate the app. The percent agreement between the highest ranked selections of the app and the expert selections was 73% (95% CI 64%–82%). Agreement between the app and the majority decision of the experts was higher than the agreement among the experts.3 Ninety-five percent of the experts considered that no incorrect or potentially harmful ASMs were ranked the highest by the application, and most experts strongly agreed with the app’s selections.3 Finally, in a more recent study, we conducted an external validation of the app using an independent real-life retrospective data set to assess whether ASMs recommended by the algorithm were associated with better outcomes than ASMs considered less desirable by the algorithm.4 Compared with ASMs considered less desirable by the algorithm, ASMs classified by the app as the best options were associated with a higher retention rate (79.4% vs 67.2%, \(p = 0.005\)), a higher seizure-freedom rate (76.0% vs 61.6%, \(p = 0.002\)), and a lower rate of discontinuation due to adverse effects (12.0% vs 29.2%, \(p < 0.001\)).4

To optimize this application and improve it as new evidence and new drugs appear, the algorithm was updated on April 12, 2021. The updated algorithm takes into account that (a) cenobamate was approved by the U.S. Food and Drug Administration (FDA) for the treatment of focal seizures in adults5; (b) new evidence indicates that lacosamide is efficacious and safe as a treatment option for primary generalized tonic-clonic (GTC) seizures in patients with idiopathic generalized epilepsy (IGE)6; and (c) new data show that perampanel is efficacious and safe as a treatment option for primary GTC seizures in patients with IGE.7

The revisions include the following:

1. Cenobamate was added to “Focal group 3” and will be re-evaluated in 1 year. A comment clarifies that this drug has been recently introduced and additional safety data are required for a potential upgrade; its modifier is allergy to any drug, downgrade by one level due to phase II studies reporting Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) syndrome.5

2. Upgrade lacosamide and perampanel to group 2 (from group 3) for primary generalized tonic-clonic seizures (GTCS).

We will continue to update the algorithm to fulfill the goal of assisting health care professionals in epilepsy management. Our ultimate goal is to improve the quality of care for patients with epilepsy.
The development of the algorithm was supported by the Filadelfia Research Foundation (Denmark). No funding was received for this letter.

ACKNOWLEDGMENT

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

CONFLICT OF INTERESTS

AAP reports honoraria from Cobel Daruo, Tekaje, and Raymand Rad; and royalties from Oxford University Press (book publication) outside the submitted work. SB reports personal fees from Brain Sentinel, Philips, Epihunter, UCB Pharma, GW Pharma, and Eisai outside the submitted work. EP reports speaker and/or consultancy fees from Angelini, Arvelle, Biogen, Biopas, Eisai, GW Pharma, Sanofi, Sun Pharma, Takeda, UCB Pharma, Xenon Pharma, and Zogenix, and publication royalties from Wiley, Elsevier, and Wolters Kluwers outside the submitted work. GR reports speaker fees from Eisai, Arvelle, Biocodex, Saniona, and UCB Pharma outside the submitted work. MRS has research contracts through the university with the National Institutes of Health, DARPA, UCB Pharma, Eisai, Takeda, Neurelis, SK Life Sciences, Engage Therapeutics, Medtronic, and Xenon; consulting through the university with Medtronic; consulting with NeurologyLive; and royalties from Oxford University Press, outside the submitted work.

AUTHOR CONTRIBUTION

All authors contributed to the conception and design of the study. AAP drafted the manuscript. All authors contributed to editing the final manuscript.

REFERENCES

Epilepsia – January 2022 – Announcements

ILAE CONGRESSES

20–25 March 2022
3rd International Training Course on Neuropsychology in Epilepsy
Bordeaux, France
https://www.ilae.org/congresses/3rd-international-training-course-on-neuropsychology-in-epilepsy

10–13 April 2022
EEG in the First Year of Life – from newborn to toddler
Cambridge, UK & Virtual course
https://www.ilae.org/congresses/eeg-in-the-first-year-of-life1

May 2022 – Date TBD
2nd North American Epilepsy Congress
Virtual congress
https://www.ilae.org/congresses/2nd-north-american-epilepsy-congress

9–13 July 2022
14th European Epilepsy Congress
Geneva, Switzerland
https://www.ilae.org/congresses/14th-european-epilepsy-congress

16–23 July 2022
5th Dianaland Summer School on EEG and Epilepsy
Dianaland, Denmark
https://www.ilae.org/congresses/5th-dianaland-summer-school-on-eg-and-epilepsy

8–11 September 2022
11th Summer School for Neuropathology and Epilepsy Surgery (INES 2022)
Erlangen, Germany

1–4 October 2022
XII Congreso Latinoamericano de Epilepsia (LAEC 2022)
Colombia
https://www.ilae.org/congresses/xii-congreso-latinoamericano-de-epilepsia

November 2022 – Date TBD
14th Asian & Oceanian Epilepsy Congress
Virtual congress
https://www.ilae.org/congresses/14th-asian-and-oceanian-epilepsy-congress

35th International Epilepsy Congress
2–6 September 2023
Dublin, Ireland
https://www.ilae.org/congresses/35th-international-epilepsy-congress

OTHER CONGRESSES

24–28 January 2022
11th EPODES–Epilepsy Surgery – Basic
Brno, Czech Republic
http://www.ta-service.cz/epodes2021

27 February–3 March 2022
American Society for Experimental Neurotherapeutics (ASENT) Annual Meeting 2022
Virtual meeting
https://asent.org/asent2022/

24–27 March 2022
16th World Congress on Controversies in Neurology
London, UK
https://cony2022.comtecmad.com/

3–8 April 2022
9th Eilat International Educational Course: Pharmacological Treatment of Epilepsy
Jerusalem, Israel
https://www.eilatedu.com/
8–10 April 2022
1er Curso Latinoamericano Teórico Práctico de Electroencefalografía Clínica
Santiago, Chile
https://www.clinicaepilepsia.cl/curso_electroencefalografia_clinica

26–28 April 2022
5th International Training Course on Neuroimaging of Epilepsy
Virtual course
https://www.mcgill.ca/neo/international-training-course-neuroimaging-epilepsy-virtual

27–30 April 2022
60. Jahrestagung der Deutschen Gesellschaft für Epileptologie
Leipzig, Germany
https://www.epilepsie-tagung.de/

28 April–2 May 2022
14th European Paediatric Neurology Society (EPNS) Congress: Precision in Child Neurology
Glasgow, UK & Virtual congress
https://epns-congress.com/

14–15 May 2022
ILAE British Branch Virtual 18th Specialist Registrar Epilepsy Teaching Weekend
Birmingham, UK
https://www.epilepsyteachingweekend.com/

22–25 May 2022
16th EILAT Conference on New Antiepileptic Drugs and Devices
Madrid, Spain
https://www.eilatxvi.com/

27–28 May 2022
Neurophysiology, neuropsychology, and epilepsy in 2022: Hills we have climbed and hills ahead
Honoring Professors Jean Gotman and Marilyn Jones-Gotman
Montreal, Canada

17–20 June 2022
10th Migrating Course on Epilepsy
Lviv, Ukraine
https://www.ilae.org/congresses/10th-migrating-course-on-epilepsy

25–28 June 2022
8th Congress of the European Academy of Neurology (EAN)
Vienna, Austria

4–8 July 2022
XVI Workshop on Neurobiology of Epilepsy (WONOEP 2022)
Talloires, France

8–9 July 2022
Epilepsy Surgery Techniques Meeting (ESTM 2022)
Geneva, Switzerland
https://www.ilae.org/congresses/epilepsy-surgery-techniques-meeting

18–29 July 2022
2022 Advanced San Servolo Epilepsy Course. Bridging Basic with Clinical Epileptology - 7: Accelerating Translation in Epilepsy Research
San Servolo (Venice), Italy
https://www.ilae.org/congresses/2022-advanced-san-servolo-epilepsy-course

23–25 September 2022
Canadian League Against Epilepsy 2022 Scientific Meeting
Kelowna, BC, Canada
https://www.ilae.org/congresses/canadian-league-against-epilepsy-2022-scientific-meeting

2023

20–24 June 2023
15th European Paediatric Neurology Society Congress (EPNS): From genome and connectome to cure
Prague, Czech Republic
https://www.epns.info/epns-congress-2023/