Editorial

Welcome to the final issue of Epigraph this Millennium. To mark this occasion we have commissioned an article from Dr Tim Pedley, Editor-in-Chief of Epilepsia. The article looks forward to what the new millennium may bring for epilepsy. The ILAE in association with the IBE is shortly to launch the mother of all epilepsy websites and Mike Chase, our webmaster is already well advanced with this exciting initiative; in this issue he gives us a flavour of what is to come. The Global Campaign, the flagship of the ILAE/IBE/WHO partnership has changed gears. Hanneke de Boer has taken over the chairmanship of the Global Campaign and we wish her every success. She is particularly keen to enhance epilepsy services in Africa and we include a short piece on the subject in this issue. Jerome Engel’s Presidential Message as ever is comprehensive and thought provoking.

My thanks go to all those who have contributed to the Bulletin Board for this issue. Our aim is to involve ILAE Chapters in the Newsletter and therefore we feel it is important for you to keep us updated of Epilepsy News in your country. We are aware of the extra demands on the part of roving correspondents to supply us with news and are grateful to you.

We take this opportunity to say farewell to Gillian Dawes, Epigraph’s Editorial Assistant. Gillian has gone onto pastures green and we would like to wish her every success for the future. Juliet Solomon, who has been Editorial Assistant for the past few issues has taken over the mantle of running the Epigraph Office. Please note our new contact details which are on the back page of this issue.

May I finish off by wishing all our readers a happy and peaceful New Millennium. This century has borne witness to significant advances in the field of epilepsy; I hope that we and our successors will see continued developments and success in the coming Millennium.

Ley Sander
Co-Editor, Epigraph

President’s Message

International Congress success

With the conclusion of another extraordinarily successful International Epilepsy Congress, it is apparent that interest in epilepsy continues to rise. The registration of approximately 4,400 participants in Prague compares with 2,000 in Oslo in 1993, 3,000 in Sydney in 1995, and almost 4,000 in Dublin in 1997. Success was measured not merely by attendance, however, but more importantly by the scientific merit of the presentations, and the high quality of information transfer that took place. In this regard, it is of particular interest to note the increasing numbers of basic scientists who are contributing to our biannual international congresses, and also to regional congresses.

As we approach the new century and consider the tremendous advances in epileptology over the past hundred years, it is clear that the understanding we have gained regarding fundamental mechanisms of epilepsy has had a profound impact on clinical practice. For example, our newfound insights into neuronal disturbances responsible for enhanced excitation, decreased inhibition, and hypersynchronization characteristic of different seizure types now drive development of “designer” antiepileptic compounds. Further studies with chronic animal models of epileptic conditions, as well as with patients, are elucidating those enduring aberrations in molecular, cellular, and systems structure and function that underlie the appearance of various forms of human epilepsy. This work has already contributed greatly to new approaches for differential diagnosis and presurgical evaluation, and should ultimately suggest more specific novel strategies for treatment and prevention.

New

Neuroscience emerged as a new, vibrant field of study towards the middle of this century, in large part due to the advent of the basic research discipline of electrophysiology. For this reason, it found its initial home in EEG societies. As it gained adherents, the

International Brain Research Organization was formed, and later the Society for Neuroscience in the United States, and similar regional and national neuroscience organizations appeared around the world. Over the past two decades, basic neuroscience has become arguably the fastest-growing and most exciting subspeciality of biomedical science and, indeed, we are coming to the end of what has now been recognized as the Decade of the Brain.

It is difficult to estimate what percentage of basic neuroscientists are working in areas relevant to epilepsy, and even more difficult to...
President’s Message continued

determine how many investigators engaged in epilepsy-related basic research actually know, or care, about issues important to clinical epileptologists. Many basic neuroscientists study epileptic seizures as tools for perturbing the brain in an effort to reveal normal neuronal mechanisms. Others who investigate neuronal substrates of experimental epileptic seizures have little knowledge of the relevance of their animal models to human epilepsy. There has always been, however, a hard core of basic neuroscientists with a firm commitment to contribute to an understanding of the human condition.

Balance

Less than two decades ago, the American Epilepsy Society made a concerted effort to attract basic scientists to its annual meeting, and to enhance the productive dialogue between basic and clinical investigators. This effort began with a handful of basic researchers profoundly interested in making their investigations relevant to clinical epilepsy, and has grown to the extent that there is now perhaps an equal balance between basic and clinical presentations at the annual meeting, which now attracts over 2,000 participants. For this reason, in the US, the American Epilepsy Society has been held up as the near-perfect example of a tightly integrated, comprehensive, disease-oriented organization.

The ILAE began a similar effort to include more basic scientists in its activities with the creation of the Commission on Neurobiology of Epilepsy over ten years ago, and the adoption of the four-day Workshop on Neurobiology of Epilepsy as a fixed satellite of the biannual international congress. Basic scientists have been attending our international congresses, as well as our regional meetings (such as the European congresses), in increasing numbers. The joint IBE and ILAE executive committees recently decreed that at least one main topic of every international congress must be basic science-related. In Prague, the basic science topic was plasticity; however, many basic science presentations were also included in sessions related to the other main topics, and a significant number of the symposia contributed by commissions were concerned with fundamental mechanisms of epilepsy.

Collaborations

The current Commission on Neurobiology is chaired by Dr. Phil Schwartzkroin, who was the first PhD full-time basic neuroscientist to become president of the American Epilepsy Society. In addition to furthering its own agenda to support basic research on epilepsy, this commission has entered into collaborations with other commissions, such as the Commission on Search for Epilepsy Genes, and has established a worldwide network of basic neuroscientists interested in epilepsy. Among other activities, these investigators will be creating basic science courses at all the regional epilepsy congresses, as well as at future International Epilepsy Congresses.

Relationships

One of the major objectives of the current ILAE Executive has been to integrate basic science, as completely as possible, into the international epilepsy agenda. Clinicians needed to be convinced that basic scientists have important contributions to make to our organization; basic scientists needed to be convinced not only that they were welcome, but that their research would benefit from continuing close relationships with clinicians. Clinicians needed to understand, and ultimately apply, the mechanical insights gained from basic investigations; basic neuroscientists need to know the problems faced by clinicians that might be resolved through research into fundamental mechanisms. It appears that acceptance of basic scientists by our clinical colleagues is now, for all intents and purposes, complete. However, much work remains to reach out to large numbers of investigators engaged in basic epilepsy-related laboratory research, particularly those who have limited resources to attend international meetings or become involved in other international activities. To accomplish this objective, we must provide a certain amount of financial support, and also demonstrate that the International Epilepsy Congresses have something significant to offer basic scientists interested in epilepsy that cannot be found at “pure” neuroscience meetings, such as those of IBRO and the Society for Neuroscience.

Exchange

With the completion of the Prague congress, we begin a concerted two-year effort by the Commission on Neurobiology, the chair of the next Workshop on Neurobiology of Epilepsy (Drs. Esper Cavalheiro and Claude Wasterlain), the basic neuroscientist on the Scientist Advisory Committee of the 24th International Epilepsy Congress (Dr. Istvan Mody), and the ILAE Executive Committee, to make the Buenos Aires congress in May 2001 an exemplary integrated exchange of basic and clinical scientific information relevant to epilepsy. We must start now to plan this congress in a way that not only welcomes our basic science colleagues, but also anticipates their needs and offers a program that will be attractive to them. I can think of no better way to ensure that the League will continue to be relevant and productive into the next century.

Jerome Engel Jnr, MD, PhD
President, ILAE
available. New insights derived from these studies are, for the first time, making it possible to determine which abnormalities found in animal models of seizures have counterparts in humans; which experimental observations are valid for the human condition and which are not; and which experimental data fit within reasonable conceptual frameworks for developing further ideas.

The Molecular Genetics Revolution

Exciting developments in basic neuroscience in the middle and latter parts of this century have been related to epilepsy, either directly (e.g. in cellular studies of disease mechanisms) or indirectly (e.g. in investigations of cortical excitability and its control). However, the concept of epilepsy, or indeed of any disease, is very much a product of the scientific beliefs of the time, and the tools that are available for investigators. Thus, the focus of epilepsy research and, as a result, views of what epilepsy “is” have developed historically from anatomic, neurophysiologic, and neurochemical perspectives, to a more encompassing neurobiological construct that itself has evolved, from system to cell, from in vitro to in vivo models, and to studies of transmitters, receptors, and channels. Now, of course, we are firmly in the era of molecules and genes. Among the more than 40 individual epileptic syndromes described in humans are about 10 that are considered familial and in which genetic determinants appear to be prominently involved. Twin studies implicate strong genetic determinants in many types of seizures and seizure disorders, especially such ones as childhood absence epilepsy, juvenile myoclonic epilepsy, and idiopathic grand mal seizures. Furthermore, some inherited disorders, such as tuberous sclerosis and neurofibromatosis, are associated with brain lesions which, in turn, give rise to symptomatic epilepsies. In most cases of epilepsy, however, the role of genetic factors is not straightforward; to the contrary, it is quite complex. For example, children of parents with either localization-related or generalized epilepsy develop seizures at increased rates, although the difference is greatest for children of parents with idiopathic forms of epilepsy. Finally, neuroprotective strategies may be a common underlying mechanism of idiopathic epilepsies.

While mutations in single genes account for some rare epileptic syndromes and familial diseases that cause epileptic seizures, the evidence from epidemiologic and family studies indicates that the majority of the idiopathic epilepsies reflect complex oligogenic inheritance patterns, not single-gene abnormalities. Multiple genes must determine the various neuronal functions which alter seizure threshold and predispose to development of clinically evident epilepsy and it is likely, as Lennox postulated 50 years ago, that these interact, to one degree or another, with acquired factors. Thus, for most epileptic disorders, it remains to be determined to what degree abnormalities of single genes, or concordance of a few key overlapping genes, determine susceptibility to seizures and the phenotypic expression of any given epileptic condition. It should soon be possible to test the hypothesis that genetic mutations in specific ion channel (or neuronal) gene components are associated with susceptibility to a particular type of seizure or epilepsy syndrome.

As human (or animal) epilepsy genes are identified, the next step will be to understand how particular molecular defects result in epileptic excitability. The relatively recent ability to create transgenic animal models that overexpress particular genes on the one hand, or that carry “knock-outs” on the other, is an essential strategy to address this issue. As their encoded proteins are identified, animal experiments will be necessary to show how these molecular anomalies lead to seizures. Not all gene defects will have intuitively obvious consequences for development of epilepsy. For example, the defective gene in Unverricht-Lundborg disease, which encodes cystatin B, a ubiquitous inhibitor of cysteine protease, a lysosomal enzyme that cannot, at the present time, be related easily to any known epileptogenic mechanism, although programmed neuronal cell death may be involved. Such data should lead eventually to a molecular classification of clinical and pharmacological seizure subtypes, and of distinct epilepsy syndromes.

Rational Drug Development

The last decade has seen the introduction of several new antiepileptic drugs, and still others, not yet marketed, are under active investigation. Most, however, have been developed as the result of serendipity, large-scale screening programs, or theoretical hypotheses. Only three drugs that are marketed or in phase III trials - vigabatrin, tiagabine, and remacemide - have resulted from efforts to develop mechanism-specific agents. The first two of these increase GABA-mediated inhibition, while the third inhibits a key enzyme involved in degrading GABA, by specific inhibition of GABA uptake into neurons and glia. In contrast, remacemide seems to have a mixed mode of action in that it (or a metabolite) acts both at NMDA receptors and at voltage-dependent Na+ channels. We continue to need new drugs because of existing ones that are relatively ineffective in severe cases of epilepsy, often have undesirable adverse effects, and are not specific for epileptogenic mechanisms. Advances in basic neuroscience offer a number of new possibilities for novel antiepileptic or “protective” drugs in the 21st century. These will include, first, the development of drugs that prevent or abort the epileptogenic process that may occur following brain injury (e.g. trauma, stroke, encephalitis). Second, although efforts to modify excitatory neurotransmission have been largely unsuccessful to date, developments in cellular and molecular biology offer new hope. For example, it may be possible to develop antisense oligonucleotides to glutamate receptor subunits, or block/modify specific channel components. Third, we can anticipate therapies that target age-specific developmental mechanisms for childhood forms of epilepsy. Finally, neuroprotective agents to attenuate or eliminate the damaging effects of prolonged or cytotoxicity related to glutamate and unbound intracellular calcium, and interrupting repeated seizures should appear. Most likely, these will be directed to blocking the second-messenger cascade.
The IBE/ILAE website

What do you suppose will be the most exciting new portal for clinical, research and public information on epilepsy at the beginning of the 21st Century? Right! It is “epilepsy.org,” which will debut in the first half of the year 2000. We cannot be more specific regarding the time of its presentation because we recognize that it will represent a substantial undertaking to “do it right the first time,” and we want the site to represent our very best effort.

Between the present and the launch of the site, we will be providing updates on our progress. We hope to obtain the input of as many individuals as possible regarding solutions to problems that we will undoubtedly confront and decisions that need to be made. For example, after it was decided to develop a Web site, the very first question that arose led to an answer that presented a major problem. It was clear that the obvious and best name for our URL (uniform resource locator, i.e., Web address) would be “epilepsy.org,” but we found that the Epilepsy Ontario organization had already registered this URL. Fortunately, they were most gracious and allowed us to re-register it as the future home of the IBE/ILAE Web site. So, many, many thanks to Epilepsy Ontario.

It was decided that the site would be one that will provide comprehensive information on epilepsy, in addition to items of relevance only to the IBE and ILAE. Thus, it will contain sections of importance to members of the IBE and ILAE, as well as provide information for epilepsy specialists and the general public. We recognized that this decision to develop a comprehensive site would require that the site would have to be organized in a manner that would allow individuals to easily and intuitively find different kinds of information.

“Where is it?”

“I don’t know.”

“It’s in here.”

“I know it is. I just don’t know where.”

“We don’t make Web sites the way we did just four years ago. The typical welcome-to-my-home-page, menu-driven, icon-encrusted model is fast being replaced by what is called “third-generation site architecture.” Though third-generation sites rely heavily on today’s browser technology, the difference is not technology per se - the difference is design.

Designers know that if people don’t consume their content, it doesn’t matter how well structured it is. In contrast, structuralists want everyone to be able to access Web content with any browser. They don’t worry much about typographic niceties or the visual lay-out of a page. To them, Web pages are documents and their interests are relegated solely to the fact that if individuals are interested in the information, they should be able to find it with a search engine. This is the situation that prevailed with first, and to some extent, second-generation sites (see below).

In contrast, for third-generation sites, design drives the user’s experience of the content; it is the designer’s responsibility to present content appropriately. Who cares how powerful a database is if people can’t use the interface? Who cares how complete or detailed the content is if people aren’t attracted to it or don’t find it pleasurable to read? For example, for some third-generation sites it is important that paragraphs be indented. But structuralists think it’s crazy to take the time to insert indents into paragraphs. According to hypermedia visionary Ted Nelson:

“Multimedia must be controlled by dictatorial artists with full say on the final cut.”

The Web is no different from the rest of the world. From legal documents, newsletters, and the Wall Street Journal to USA Today and Wired magazine, a successful format completes the communication link between content producers and the intended audience.

First, Second and Third-Generation Sites

First-Generation Sites.

First-generation sites were linear. They were bare-bones, functional, and were intended mainly to allow scientists and others around the world to obtain basic information. When one views a typical first-generation page, the restrictions imposed by slow modems, monochrome monitors, and default browser style sheets are clear.

First-generation sites were designed by technical people. Some sites had headline banners and
were well organized; most had edge-to-edge text that ran on for pages, separated by meaningless blank lines. At best, they looked like slide presentations shown on a cement wall.

Second-Generation Sites.

Second-generation sites are basically first-generation sites with icons replacing words, titled images replacing gray backgrounds and buttons with beveled edges. They use a top-down, bullet-list, menu-driven model to present a hierarchy of information.

Third-Generation Sites.

Third-generation sites are rapidly becoming the norm, rather than the exception. A third-generation site combines typographic and visual layout principles with creative design solutions to provide a complete experience for the visitor. Third-generation sites use metaphors and visual themes to entice and guide. They strive to make a site feel familiar and easy to navigate, with quality content and high production values. Third-generation site designers carefully specify the position and relationships of all elements on the page, retaining fine control of the layout.

Thus, a third-generation site is wrought by design, not technological competence. Third-generation sites give visitors a complete experience, from entry to exit. The cleverness of third-generation designers is not technical but visual. Design is the difference. In this way third-generation sites pull visitors through using metaphor and well-known models of consumer psychology. Just as retailers spend a lot of time tuning their environments to the customers passing by, third-generation sites are a complete experience—the more you explore, the more the entire picture of the site comes together. Third-generation design turns a site from a menu into a meal.

Building third-generation sites is hard. It takes time, dedication, and a sense of what excites the viewers. Third-generation sites usually require several people working together, pushing themselves to make every page beautiful and the entire site “work” a surfing experience.

Basic Principles of Web-based Information Communication

As people wander by a site, it is important to hold out a basket of goodies to tempt them. Gossip, news, sports scores, weather information, stock quotes, promotional sales, package-tracking services and sound files routinely lure potential viewers to a good Web site.

In contrast to the second-generation concept of a home page, third-generation sites often have either one or several core pages to organize and present the contents. Some third-generation sites have no core page at all. Core pages direct the visitor by the contents. Some third-generation sites have no core page at all. Core pages direct the visitor by the contents.

Second-Generation Sites.

Second-generation sites are basically first-generation sites with icons replacing words, titled images replacing gray backgrounds and buttons with beveled edges. They use a top-down, bullet-list, menu-driven model to present a hierarchy of information.

Third-Generation Sites.

Third-generation sites are rapidly becoming the norm, rather than the exception. A third-generation site combines typographic and visual layout principles with creative design solutions to provide a complete experience for the visitor. Third-generation sites use metaphors and visual themes to entice and guide. They strive to make a site feel familiar and easy to navigate, with quality content and high production values. Third-generation site designers carefully specify the position and relationships of all elements on the page, retaining fine control of the layout.

Thus, a third-generation site is wrought by design, not technological competence. Third-generation sites give visitors a complete experience, from entry to exit. The cleverness of third-generation designers is not technical but visual. Design is the difference. In this way third-generation sites pull visitors through using metaphor and well-known models of consumer psychology. Just as retailers spend a lot of time tuning their environments to the customers passing by, third-generation sites are a complete experience—the more you explore, the more the entire picture of the site comes together. Third-generation design turns a site from a menu into a meal.

Building third-generation sites is hard. It takes time, dedication, and a sense of what excites the viewers. Third-generation sites usually require several people working together, pushing themselves to make every page beautiful and the entire site “work” a surfing experience.

Basic Principles of Web-based Information Communication

As people wander by a site, it is important to hold out a basket of goodies to tempt them. Gossip, news, sports scores, weather information, stock quotes, promotional sales, package-tracking services and sound files routinely lure potential viewers to a good Web site.

In contrast to the second-generation concept of a home page, third-generation sites often have either one or several core pages to organize and present the contents. Some third-generation sites have no core page at all. Core pages direct the visitor by the contents. Some third-generation sites have no core page at all. Core pages direct the visitor by the contents.

Second-Generation Sites.

Second-generation sites are basically first-generation sites with icons replacing words, titled images replacing gray backgrounds and buttons with beveled edges. They use a top-down, bullet-list, menu-driven model to present a hierarchy of information.

Third-Generation Sites.

Third-generation sites are rapidly becoming the norm, rather than the exception. A third-generation site combines typographic and visual layout principles with creative design solutions to provide a complete experience for the visitor. Third-generation sites use metaphors and visual themes to entice and guide. They strive to make a site feel familiar and easy to navigate, with quality content and high production values. Third-generation site designers carefully specify the position and relationships of all elements on the page, retaining fine control of the layout.

Thus, a third-generation site is wrought by design, not technological competence. Third-generation sites give visitors a complete experience, from entry to exit. The cleverness of third-generation designers is not technical but visual. Design is the difference. In this way third-generation sites pull visitors through using metaphor and well-known models of consumer psychology. Just as retailers spend a lot of time tuning their environments to the customers passing by, third-generation sites are a complete experience—the more you explore, the more the entire picture of the site comes together. Third-generation design turns a site from a menu into a meal.

Building third-generation sites is hard. It takes time, dedication, and a sense of what excites the viewers. Third-generation sites usually require several people working together, pushing themselves to make every page beautiful and the entire site “work” a surfing experience.

Basic Principles of Web-based Information Communication

As people wander by a site, it is important to hold out a basket of goodies to tempt them. Gossip, news, sports scores, weather information, stock quotes, promotional sales, package-tracking services and sound files routinely lure potential viewers to a good Web site.

In contrast to the second-generation concept of a home page, third-generation sites often have either one or several core pages to organize and present the contents. Some third-generation sites have no core page at all. Core pages direct the visitor by the contents. Some third-generation sites have no core page at all. Core pages direct the visitor by the contents.

Second-Generation Sites.

Second-generation sites are basically first-generation sites with icons replacing words, titled images replacing gray backgrounds and buttons with beveled edges. They use a top-down, bullet-list, menu-driven model to present a hierarchy of information.

Third-Generation Sites.

Third-generation sites are rapidly becoming the norm, rather than the exception. A third-generation site combines typographic and visual layout principles with creative design solutions to provide a complete experience for the visitor. Third-generation sites use metaphors and visual themes to entice and guide. They strive to make a site feel familiar and easy to navigate, with quality content and high production values. Third-generation site designers carefully specify the position and relationships of all elements on the page, retaining fine control of the layout.

Thus, a third-generation site is wrought by design, not technological competence. Third-generation sites give visitors a complete experience, from entry to exit. The cleverness of third-generation designers is not technical but visual. Design is the difference. In this way third-generation sites pull visitors through using metaphor and well-known models of consumer psychology. Just as retailers spend a lot of time tuning their environments to the customers passing by, third-generation sites are a complete experience—the more you explore, the more the entire picture of the site comes together. Third-generation design turns a site from a menu into a meal.

Building third-generation sites is hard. It takes time, dedication, and a sense of what excites the viewers. Third-generation sites usually require several people working together, pushing themselves to make every page beautiful and the entire site “work” a surfing experience.

Basic Principles of Web-based Information Communication

As people wander by a site, it is important to hold out a basket of goodies to tempt them. Gossip, news, sports scores, weather information, stock quotes, promotional sales, package-tracking services and sound files routinely lure potential viewers to a good Web site.

In contrast to the second-generation concept of a home page, third-generation sites often have either one or several core pages to organize and present the contents. Some third-generation sites have no core page at all. Core pages direct the visitor by the contents. Some third-generation sites have no core page at all. Core pages direct the visitor by the contents.

Second-Generation Sites.

Second-generation sites are basically first-generation sites with icons replacing words, titled images replacing gray backgrounds and buttons with beveled edges. They use a top-down, bullet-list, menu-driven model to present a hierarchy of information.

Third-Generation Sites.

Third-generation sites are rapidly becoming the norm, rather than the exception. A third-generation site combines typographic and visual layout principles with creative design solutions to provide a complete experience for the visitor. Third-generation sites use metaphors and visual themes to entice and guide. They strive to make a site feel familiar and easy to navigate, with quality content and high production values. Third-generation site designers carefully specify the position and relationships of all elements on the page, retaining fine control of the layout.

Thus, a third-generation site is wrought by design, not technological competence. Third-generation sites give visitors a complete experience, from entry to exit. The cleverness of third-generation designers is not technical but visual. Design is the difference. In this way third-generation sites pull visitors through using metaphor and well-known models of consumer psychology. Just as retailers spend a lot of time tuning their environments to the customers passing by, third-generation sites are a complete experience—the more you explore, the more the entire picture of the site comes together. Third-generation design turns a site from a menu into a meal.

Building third-generation sites is hard. It takes time, dedication, and a sense of what excites the viewers. Third-generation sites usually require several people working together, pushing themselves to make every page beautiful and the entire site “work” a surfing experience.
ARGENTINA
Recently in Argentina, the National Epilepsy Law was passed by the National Senate; it has now been passed to the House of Representatives and once passed it will become effective as National Law.
Dr Silvia Kocen, head of the epilepsy center at ‘R Mejia’ Hospital, University of Buenos Ares and co-founder of FUNDEPI, and Mr Jorge Lovento, current Chairman of FUNDEPI, instigated the law
The law in principle deals with the discrimination and lack of protection suffered by patients with epilepsy. Three main aspects are taken into consideration: the patient’s right to access to a diagnosis and to receive free antiepileptic medication in the event that they do not have medical assistance; non-discrimination in the workplace, school or from any other social setting; and the implementation of educational campaigns aimed at informing the community, patients, their relatives and medical and non-medical professionals about what epilepsy is.
Silvia Kocen
e-mail: skocen@mail.retina.ar

CHILE
In preparation for the First Latin American Epilepsy Conference next September, the Chilean Chapter has elected a new Executive Committee led by Dr. Marcel Devilat as its President. He and his colleagues would like to see as many of you as possible at the Conference.
Tomas Mesa
e-mail: tmesa@med.puc.cl

GERMANY
With a view to the local global campaign, public awareness events for epilepsy are continuing on a local level. The IZE is an information center that was founded in 1985 which has as its main function the distribution of information material about epilepsy to the lay public. The information material covers many relevant areas including schooling and epilepsy, driving, women’s issues etc. The homepage is www.IZEPHIR-EPSIE.de
Ingrid Taxborn
e-mail: txt@neuro.mara.de

MALTA
The Minister of Health in Malta, Dr Louis Deguara was recently invited to launch a small booklet entitled ‘Epilepsia u t-bfla’ (epilepsy and children) during a well publicised press conference. The booklet was written by Dr Dordite Soler, one of the members of the Epilepsy Society of Malta (which is the local chapter of the International League Against Epilepsy), and paediatrician at St Luke’s Hospital, in conjunction with Dr Simon Attard Montaldo, Head of Paediatrics. The publication of this booklet was sponsored by the Health Promotion Unit, Department of Health. As part of an on-going collaboration with the local support group, Malta Epilepsy Support Group (Caritas Malta), this booklet is the latest in a series of information guidelines written in Maltese, as part of the local campaign for Epilepsy ‘Out of the Shadows’.
Janet Mifsud
e-mail: jansmif@um.edu.mt

SWEDEN
Sweden has celebrated the end of the Decade of the Brain which have included activities concerning epilepsy. There have been lectures for the public, exhibitions, publication of books and radio and television programmes. At the end of this year the Swedish Epilepsy Society have organised a research meeting entitled: “Epilepsy - a window to understanding the brain”, and in addition a joint meeting with Swedish and Chinese epileptologists.
Eva Kamlien
e-mail: eva.kamlien@neurologi.uu.se

TURKEY
There are hopes to extend Epifbase, the Turkish epilepsy database. An Epifbase Bulletin of 8 pages will be published every three months. The first bulletin due to be issued in January 2000 will contain information about epilepsy education and evaluation of the Epifbase programme.
e-mail: cgonurse@superonline.com

UNITED KINGDOM
A new government report (the Report of the Clinical Standards Advisory Group) is being published, in which a series of recommendations are made for changes in the way epilepsy services are organised in the United Kingdom. The aim is to produce truly ‘joined up’ epilepsy care with an emphasis on strengthening primary care and encouraging shared care between primary and secondary levels, and the setting of a network of around 100 Epilepsy Centres throughout the country, each covering a population of 500,000 persons. For further details on the report please contact Professor Simon Shinuon at 6th Floor, Institute of Neurology, Department of Clinical Neurology, Queen Square, London WC1N 3BG, UK or by e-mail: s.shorvon@ion.ucl.ac.uk
The National Society for Epilepsy has launched a new CD-ROM, ‘Epilepsy: an interactive guide for medical professionals’, priced £79.95. It is a comprehensive, interactive multimedia guide covering both medical and psychosocial issues.
For further information please contact Elaine Faulkner at the National Society for Epilepsy. Tel +44 1494 601 300
e-mail: elaine@epilepsyNSE.co.uk

VENUEZUELA
After considerable efforts, the Venezuelan League Against Epilepsy held its first National Epilepsy Congress. This took place in the first week of November in Caracas. This meeting will be seen as a landmark in the history of the Epilepsy movement in Venezuela and was only possible with the help and support of all the scientific community in the country. We hope that it will be the first of many!
Beatriz Gonzalez Del Castillo
e-mail: becastelle@telecel.net.ve

Have your say!
Contributions to the Bulletin Board are always welcome from any organisations or individuals with a ‘story to tell’. Please e-mail the Epigraph Office: j.solomon@ion.ucl.ac.uk or fax on +44 (0) 20 7833 2823 or write to Juliet Solomon at Institute of Neurology, 6th Floor, Queen Square, London WC1N 3BG, UK.

African Challenge of Global Campaign
One of the most exciting challenges that the international epilepsy community, via the Global Campaign, must face during the next millennium is the fight against epilepsy in developing countries.
Through joint and concerted efforts, it is possible to make significant improvements in the field of epilepsy, such as reducing the treatment gap which affects at least 80% of people with epilepsy in the developing world. The Global Campaign Against Epilepsy supported by the ILAE, IBE and WHO, with future support from UN specialised institutions, international financial institutions and non-governmental organisations provides a unique opportunity to yield positive results.
For the African continent, the first steps will begin in 2000. An exciting initiative due to begin in 2000 are the epilepsy projects to take place in Zimbabwe and Senegal, the structure and principles of which were defined at a meeting held in Geneva in May 1999. The five-year action plan will allow the two countries to focus on epilepsy care, training information. education and epilepsy prevention. It is hoped that this initiative will mark the start of greater action within the African continent, at both regional and national levels.
A meeting is due to take place in Dakar, Senegal at the beginning of May 2000 where African countries will have the opportunity together of starting to tackle the ‘Global Campaign’, by clarifying policies and plans for future initiatives, with the aim of pushing epilepsy ‘out of the shadows’. At this meeting, the ‘African initiative against epilepsy’, supported by an ‘African Declaration’ will be officially adopted, in the presence of international delegates from the WHO, ILAE, IBE and various other interested parties.
For more information on the meeting in Dakar please contact:
Amadou Gallo Diop: gallo@telecomplus.sn
Hanneke de Boer: ibe@xs4all.nl

Amadou Gallo Diop, PhD
Secretary General of the Senegalese League Against Epilepsy
Famous people with Epilepsy

This issue’s ‘famous person with Epilepsy’ is Joan of Arc. A national heroine, Joan of Arc is the Patron Saint of France. Also called the ‘Maid of Orleans’, she united the nation and decisively turned the Hundred Years’ War in France’s favour. Her life and death have been the subject of much controversy. The ILAE has had her listed in their pantheon of famous figures with epilepsy for some time, although it has to be admitted that the evidence she suffered from the disease is scant. She was a brave (possibly foolhardy) woman and the editors hope that her inclusion in this page does not re-ignite an Anglo-Gallic conflict (who was it that said the passage of history was always circular?) Nor do we find her necessarily a good role model for burgeoning European consensi. Nevertheless, . . .

Joan of Arc was born in the village of Domrémy, in Lorraine, France in 1412, around the time that the Hundred Years’ War between England and France was being renewed. She began to hear celestial voices, often accompanied by visions at the age of 13. She later identified these visions as being those of St Michael who was accompanied by other angels), St Margaret and St Catherine. These voices, appearing several times a day addressed her as ‘Jeanne La Pucelle de Dieu’. From the onset, she was informed of her mission: she had been chosen by God to restore France and aid the Dauphin Charles, who was to be King of France and lead the army. It was not until the age of sixteen that Joan of Arc began to act on the voices, which had become more urgent.

In 1429 she led the French to a decisive victory over the English at Orléans. At the coronation of the Dauphin in the Cathedral at Rheims, she was given the place of honour. The following year, Joan led a military operation without royal support against the English at Compiègne, near Paris. She was captured by Burgundian soldiers, who then sold her to their English allies. Accused of heresy for believing she was directly responsible to God rather than to the Roman Catholic Church, the ecclesiastical church condemned her to death, but the sentence was commuted to life imprisonment when she confessed her errors.

The visions might have been epileptic fits, although Joan was always reluctant to speak of the voices. She said nothing about them to her confessor and constantly refused at her trial to be drawn into descriptions of the appearance of the Saints or to explain how she recognised them. None the less, she told her judges ‘I saw them with these very eyes, as well as I see you.’ Later she was again condemned by a secular court, and on May 31 1431, Joan was burned at the stake in the Old Market Square at Rouen, as a relapsed heretic. At her death, those in attendance reported that the name ‘Jesus’ could be sighted in the flames that killed her, and a white dove was seen flying out of the pyre towards the direction of France. Even the executioner was convinced he had killed a saint. After her death, Joan of Arc’s ashes were thrown into the Seine.
Diary Dates

If you would like to publicise an event taking place in your part of the world which would be of interest to ILAE members, we would be happy to receive the relevant information. Please provide date, venue, subject and contact details including contact person, address, telephone/fax number, email address and web site. Please forward this information to the Epigraph office (details below).

International League Against Epilepsy British Branch Annual Scientific Meeting ‘Northern Exposure’ March 30th–April 1st 2000, Edinburgh, Scotland

For further details please contact: Conference 2000 81-83 Willow Street, Oswestry, Shropshire, SY11 1AJ, United Kingdom.
Fax: +44 1691 670302
E-mail: denise@conference2000.prestel.co.uk

International Meeting on the Psychobiology of Epilepsy, Berlin, 6-7 May 2000

This meeting will be organised by Professor M Trimble and Dr B Smerit. The meeting will discuss behavioural and psychosocial problems of patients with epilepsy, covering a very wide perspective. Speakers include internationally recognised researchers, and topics will span subjects from subtle cognitive impairment through top postictal psychoses. A heavy emphasis on mechanisms and management will be given. Information about registration (£300 sterling, or £50 for students can be obtained from: Jackie Ashmenall, St Aiden, Earls Green, Ealing, London W5 5EN, United Kingdom.
Tel: +44 020 7829 8743/ +44 020 7840 1287
Fax: +44 0207 287 3053
E-mail: jashmenall@yahoo.com or visit our website: www.wai.co.uk/epilepsy

An update of technological advances and their clinical applications for physicians and technologists.

Richmond, Virginia, USA. For further information please contact: Judy Hartfield.
Tel: (804) 828 3640, (800) 413 2872.
Fax: (804) 828 7438.

10th Meeting of the European Neurological Society, 18-22 June 2000, Jerusalem, Israel

For further information please contact: Administrative Secretariat ENS 2000, c/o AKM Congress Service, PO Box CH-4005 Basel, Switzerland.
Tel: +41 61 686 77 11 Fax +41 61 686 77 88
E-mail: info@akm.ch
http://www.ensinfo.com

5th Elat Conference on New Anti-Epileptic Drugs (Eilat V), Israel, 25-29 June 2000

To be held at the Dan Hotel, Elat. The programme will provide critical reviews and updated information about new AEDs in different stages of development as well as present progress reports on marketed new AEDs. For further information please contact: Target Tours Ltd, Elat V, PO. BOX 29041, Tel Aviv, 61290 Israel.
Tel: +972 3 517 5150 Fax: +972 3 517 5155
E-mail: trg@tevision.net.il

11th International Cleveland Clinic-Bethesda Epilepsy Symposium: Cortical Dysplasia and Epilepsy, Cleveland, Ohio, 27-30 June 2000

This meeting will be held at the Cleveland Clinic. The subject will be ‘Cortical Dysplasia and Epilepsy: Pathophysiology, Diagnosis and Management’. The International Symposium will be preceded by two related meetings: The comprehensive Course (22-25 June 2000) and Neuroimaging and Epilepsy (26 June 2000). For further information, Tel: +216 444 5178 Fax: +216 444 0230
e-mail: schoepm@ccf.org

10th European Congress of Clinical Neurophysiology, 26-30 August 2000

This will be held at the Palais de Congrs, Lyon, France. For further details please contact: Franck Chatelain, +33 47277 4550 Fax: +33 472 774777
E-mail: package@package.fr

Neuropathology 2000 -XIVth International Congress of Neuropathology, 3-6 September 2000, Birmingham, UK

For further information please contact: Congress Secretariat, 4B, 50 Speirs Wharf, Port Dundas, Glasgow G4 9TB, UK.
Tel: +44 141 331 0123 Fax: +44 141 331 0234
E-mail: info@neuropathology2000.co.uk

II Latinoamerican Epilepsy Congress, Santiago, Chile, 8-10 September 2000

This is the first Latin American Epilepsy Congress committed to the ILAE/WHO/IBE slogan ‘Bringing Epilepsy Out of the Shadows’. The meeting will be attended by Dr. Jerome Engel (President/ILAE) and Dr. Richard Holmes (President/IBE). For further information please contact: Dr. Manuel Campos, Epilepsia 2000, Pasaje Lo Gállo 1787, Vitacura, Santiago, Chile. Tel: +56 2 232 9347 Fax: +56 2 229 6731.
E-mail: mcampos@med.puc.cl

4th ILE European Congress of Epileptology Florence, Italy, 7-12 October 2000

This Congress will be held at the Fortezza Da Basso. Main topics include: ‘Anatomo-Electroclinical Aspects of Frontal Lobe Seizures’; Symptomatic Epilepsies; ‘What can be learned from Human Tissue Study’; Relationship between Presurgical Evaluation Strategy and Surgical Results; ‘Adverse effects of AEDs’. Contact: Maura Stella, PITS Congress, via Tevere 20, 00198 Rome, Italy. Tel: +39 06 85 35 55 90 Fax: +39 06 85 35 60 60
e-mail: ptscongr@tin.it

5th Congress of the European Federation of Neurological Societies (EFNS 2000)

Copenhagen, Denmark, 14-18 October 2000

The Danish Neurological Society celebrates its 100 year anniversary, and the EFNS 2000 Congress will be held at Copenhagen’s Bella Center. Main topics are Stroke; Epilepsy; Neuropathy; Movement Disorders; Headache; Cost-Effectiveness of Treatment in Neurology; Dementia; MS and addiction-related neurological disorders. There will also be teaching courses and special lectures. For further information please contact: EFNS 2000, c/o DIS Congress Service Copenhagen A/S, Herlev Ringvej 2C, DK-2730 Herlev, Denmark.
Tel: +45 4492 4492 Fax: +45 4492 5050 e-mail: efns@dicscongress.com

3rd Congress of Asian Oceanic Epilepsy Organisation (AOED), New Delhi, India, 11-13 November 2000

For further information please contact: Dr Satish Jain, Secretary General, Dept. of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi-110 029, India.
Tel: +91 11 659 4210/656 9007 Fax: +91 11 652 1086/686/2663
e-mail: satijain55@hotmail.com