LETTER

Epilepsia

The de novo *GABRA4* p.Thr300Ile variant found in a patient with early-onset intractable epilepsy and neurodevelopmental abnormalities displays gain-offunction traits

To the Editors:

We were encouraged to read the recent publication by Vogel et al.¹ in *Epilepsia* providing the first association between a de novo missense variant in *GABRA4* and a neurodevelopmental disorder with early-onset epilepsy.¹

The *GABRA4* gene encodes the α 4 subunit of the γ -aminobutyric acid (GABA) type A receptor, and this subunit is relatively abundant in the cortex, hippocampus, and thalamus, all brain regions known to be involved in epilepsy.^{2,3} The α 4 subunit primarily assembles with β and δ subunits to form, for example, α 4 β 2 δ receptors,^{4–6} and these receptors are localized in extrasynaptic membranes where they respond to low ambient levels of GABA and spill over from synaptic release resulting in long-lasting tonic inhibition of neuronal activity.^{7–9}

We recently discovered that pathogenic variants in *GABRD*, encoding the δ subunit, cause gain-of-function traits in $\alpha 4\beta 2\delta$ receptors and interestingly one specific variant, *GABRD* p.Thr291Ile, is paralogous to the *GABRA4* p.Thr300Ile variant.¹⁰ Intrigued by this observation, we extended the study of Vogel et al.¹ with electrophysiological analysis of the *GABRA4* p.Thr300Ile variant in combination with the δ subunit using previously described methodologies.^{10,11}

The mean current amplitude obtained with a maximally efficacious concentration of GABA was increased by 6.2-fold and the sensitivity to GABA was increased by ~10 fold for $\alpha 4^{T300I}\beta 2\delta$ vs wild-type receptors (Figure 1). Furthermore, the maximum estimated open probability was increased ~18-fold, showing an increased ability of GABA to gate variant $\alpha 4^{T300I}\beta 2\delta$ receptors. Like Vogel et al.¹ we observe that variant receptors display

faster desensitization kinetics than wild-type receptors at high GABA concentrations (data not shown); however, $\alpha 4\beta 2\delta$ receptors are extrasynaptic receptors that respond to low concentrations of GABA in the brain, and no obvious desensitization was observed with GABA concentrations below 1 µM. Thus despite the inherent complexity of receptor desensitization kinetics, we conclude that the increases in current amplitudes and sensitivity to GABA caused by the *GABRA4* variant bestow extrasynaptic δ -containing receptors with gainof-function properties.

Of interest, the *GABRA4* Thr300 amino acid position appears to be a hotspot for pathogenic variants in most if not all GABA_AR subunit classes. Besides the paralog *GABRD* p.Thr291Ile variant mentioned above,¹⁰ we recently described the functional consequence of the paralogous variant in *GABRB3* p.Thr287Ile.^{12,13} *GABRB3* encodes the β 3 subunit, and we observed that this epilepsy-associated variant also causes strong gain-of-function traits. Hence, a threonine to isoleucine substitution in this specific protein position appears to cause gain-of-function traits irrespective of the subunit type.

When comparing the clinical manifestations, there are similarities as well as differences between the carriers of the *GABRA4* variant¹ and the paralog *GABRD* and *GABRB3* variants.^{10,12} The *GABRA4* variant, which was observed in mosaic state (17%) in a 5.5-year-old girl, was associated with intractable nocturnal frontal lobe seizures (onset 3.5 years), dyspraxia, and attention deficit.¹ In comparison, the *GABRD* variant was observed to cause early-onset (1–4 years) generalized epilepsy with intractable atypical absence seizures, various degrees of learning difficulties/intellectual disability, and attention-deficit/ hyperactivity disorder (ADHD) in a mother and her twin sons.¹⁰ Finally, the *GABRB3* variant was observed in a child with an unclassified developmental and epileptic encephalopathy (onset 3 months) with intractable tonic,

We confirm that we have read the Journal's position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

^{© 2022} International League Against Epilepsy.

Epilepsia. 2022;63:2439–2441.

FIGURE 1 Functional analysis of the *GABRA4* p.Thr300Ile variant in $\alpha4\beta2\delta$ receptors. *Xenopus laevis* oocytes were injected with complementary RNA mixtures of free $\alpha4$, $\beta2$, and δ subunits in a 5:1:5 ratio and subjected to two electrode voltage-clamp electrophysiology as described previously.^{10,11} (A) γ -aminobutyric acid (GABA)_{max}-evoked peak-current amplitudes are depicted normalized to the mean value of the wild-type receptor for each experimental day. Average values are presented as mean ± standard deviation (SD) for the indicated number of individual biological replicates and data sets were significantly different (p < .0001, Mann–Whitney *U* test). (B) GABA-evoked peak current amplitudes are depicted as mean ± SD as a function of the GABA concentration for n = 8-10 experiments for the indicated receptors. A Hill equation was fitted to the data using nonlinear regression and fitted half maximal effective concentration (EC₅₀) values are indicated in the panel. (C) Estimated open probabilities were evaluated as described previously^{10,11} by comparing the response of GABA_{max} in combination with a cocktail of positive allosteric modulators (allopregnanolone (3.16 µM), etomidate (31.6 µM), and Delta Selective compound 2 (DS2, 10 µM)). Data are depicted with indication of mean values ± SD for the indicated number of biological replicates and were significantly different (p < .0001, Mann–Whitney *U* test).

myoclonic, and focal motor seizures and severe global developmental delay.^{12,13} This patient was hypersensitive to vigabatrin, and we speculate that this drug should be avoided in patients with *GABRD* and *GABRA4* gain-of-function variants as well.

Overall, our observations complement the study by Vogel et al.¹ and highlight an important role for gain-offunction extrasynaptic receptors in the etiology of epilepsy and neurodevelopmental disorders. The challenge now is to accumulate enough variants in the *GABRA4* and *GARBD* genes to robustly define the clinical phenotype that is associated with distinct functional changes in each gene.

FUNDING INFORMATION

The Australian National Health & Medical Research Council grant APP1185122 (P.K.A., N.A., M.C.) and The Lundbeck Foundation (R324-2019-1083 to R.S.M.). The Australian Research Training Program Stipend scholarship (S.L.).

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

All data associated with this study are present in the paper.

Philip K. Ahring¹ Vivian W. Y. Liao¹ Susan Lin¹ Nathan L. Absalom² Mary Chebib¹ Rikke S. Møller^{3,4}

¹Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia Email: philip.ahring@sydney.edu.au ²School of Science, University of Western Sydney, Sydney, New South Wales, Australia ³Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark ⁴Department of Regional Health Research, University of Southern Denmark, Odense, Denmark Email: rimo@filadelfia.dk

ORCID

Philip K. Ahring b https://orcid.org/0000-0003-1807-3331 Vivian W. Y. Liao b https://orcid.org/0000-0001-8608-0563 Susan Lin b https://orcid.org/0000-0003-3587-0957 Nathan L. Absalom b https://orcid.org/0000-0002-6084-5991 Mary Chebib b https://orcid.org/0000-0001-6204-3178 Rikke S. Møller b https://orcid.org/0000-0002-9664-1448

REFERENCES

- Vogel FD, Krenn M, Westphal DS, Graf E, Wagner M, Leiz S, et al. A de novo missense variant in GABRA4 alters receptor function in an epileptic and neurodevelopmental phenotype. Epilepsia. 2022;63(4):e35–41.
- Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABA(a) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience. 2000;101(4):815–50.
- Chandra D, Jia F, Liang J, Peng Z, Suryanarayanan A, Werner DF, et al. GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc Natl Acad Sci U S A. 2006;103(41):15230–5.
- Ahring PK, Bang LH, Jensen ML, Strobaek D, Hartiadi LY, Chebib M, et al. A pharmacological assessment of agonists and modulators at alpha4beta2gamma2 and alpha4beta2delta GABAA receptors: the challenge in comparing apples with oranges. Pharmacol Res. 2016;111:563–76.
- Hartiadi LY, Ahring PK, Chebib M, Absalom NL. High and low GABA sensitivity alpha4beta2delta GABA receptors are expressed in Xenopus laevis oocytes with divergent stoichiometries. Biochem Pharmacol. 2016;103:98–108.
- Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(a) receptors. Nat Rev Neurosci. 2005;6(3):215–29.

 Cope DW, Hughes SW, Crunelli V. GABAA receptormediated tonic inhibition in thalamic neurons. J Neurosci. 2005;25(50):11553–63.

Epilepsia

- 8. Pierce SR, Senneff TC, Germann AL, Akk G. Steady-state activation of the high-affinity isoform of the $\alpha 4\beta 2\delta$ GABA(a) receptor. Sci Rep. 2019;9(1):15997.
- Cope DW, Di Giovanni G, Fyson SJ, Orban G, Errington AC, Lorincz ML, et al. Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med. 2009;15(12):1392–8.
- Ahring PK, Liao VWY, Gardella E, Johannesen KM, Krey I, Selmer KK, et al. Gain-of-function variants in GABRD reveal a novel pathway for neurodevelopmental disorders and epilepsy. Brain. 2022;145(4):1299–309.
- Liao VWY, Chebib M, Ahring PK. Efficient expression of concatenated α1β2δ and α1β3δ GABA(a) receptors, their pharmacology and stoichiometry. Br J Pharmacol. 2021;178(7):1556–73.
- Absalom NL, Liao VWY, Kothur K, Indurthi DC, Bennetts B, Troedson C, et al. Gain-of-function GABRB3 variants identified in vigabatrin-hypersensitive epileptic encephalopathies. Brain Commun. 2020;2(2):fcaa162.
- Absalom NL, Liao VWY, Johannesen KMH, Gardella E, Jacobs J, Lesca G, et al. Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies. Nat Commun. 2022;13(1):1822.